
GDMP
Grid Data Mirroring Package

Grid Data Mirroring Package

User Guide for GDMP 3.0

GDMP Team: Heinz Stockinger 1), Shahzad Muzaffar 2)∗, Flavia Donno 3),
Aleksandr Konstantinov 4), Asad Samar 5)†

1) CERN, European Organization for Nuclear Research, Geneva, Switzerland, Heinz.Stockinger@cern.ch

2) Fermi National Laboratory, Batavia, Illinois, muzaffar@fnal.gov

3) INFN Pisa, Italy, Flavia.Donno@pi.infn.it

4) University of Oslo, aleks@fys.uio.no

5) California Institute of Technology, Pasadena, California, Asad.Samar@cern.ch

July 6, 2002

Abstract

The GDMP client-server software system is a generic file replication tool that replicates files securely
and efficiently from one site to another in a Data Grid environment using several Globus Grid tools. In
addition, it manages replica catalogue entries for file replicas and thus maintains a consistent view of
names and locations of replicated files. Files of arbitrary file format can be replicated. For Objectivity
database files a particular plug-in exists. All files are assumed to be read-only.

GDMP is a collaboration between the European DataGrid [2] project (in particular the Data Man-
agement work package, Work Package 2 (WP2) [3]) and Particle Physics Data Grid (PPDG) [9]. GDMP
version 3.0 is part of the official DataGrid software system and contains certain adaption for the Euro-
pean DataGrid testbed.

This user guide gives detailed instructions for installation and usage of GDMP. In addition, a generic
replica catalogue API in C++ and the corresponding command line tool for the Globus Replica Cata-
logue are provided and described.

∗not active anymore in the project
†not active anymore in the project

1

Contents

1 Introduction 3

2 New Features and Improvements in Version 3.0 3

3 Software Installation 5
3.1 Required Software . 5
3.2 Installation Instructions . 6
3.3 RPM Installation . 8

3.3.1 Installing Source RPMs as non-root User . 9
3.4 Full Installation versus GDMP Client Installation . 9

4 Configuration Instructions 10
4.1 GDMP Configuration Files . 10

4.1.1 gdmp.shared.conf . 10
4.1.2 gdmp.conf and GDMP CONFIG FILE . 11
4.1.3 gdmp.private.conf . 12

4.2 configure gdmp . 13
4.2.1 GDMP Server Configuration with inetd . 14
4.2.2 Standalone GDMP server . 14

4.3 Configuration for Multiple VO support . 15
4.4 The GDMP Directories . 17
4.5 Security for GDMP server and clients . 17

4.5.1 GDMP grid-mapfile Entries . 17
4.5.2 Configuration for multiple VOs . 18

4.6 Configuration for the GDMP Client Installation . 19

5 Data Replication and Background for GDMP Usage 19
5.1 Directories and File Replication . 19
5.2 Filenames . 20
5.3 Globus Replica Catalogue . 20

5.3.1 Globus Replica Catalogue Security . 21
5.4 Internal File Catalogues . 22

6 Using GDMP 23
6.1 Quick Start Guide to run GDMP . 23
6.2 Using the GDMP Client Installation . 25
6.3 The Mechanics of GDMP . 25
6.4 Security Issues for GDMP Server and Clients . 27
6.5 Subscription to Remote Servers . 27
6.6 Notification . 28
6.7 System States for File Replication Process . 28
6.8 Preliminary Space Management . 29
6.9 Monitoring GDMP transfers: GDMP Heartbeat Monitor . 29
6.10 Network Failures . 30
6.11 Some Program Restrictions . 30
6.12 Server Logfiles . 30

2

7 GDMP Tools 31
7.1 gdmp catalogue cleanup . 31
7.2 gdmp get catalogue . 32
7.3 gdmp host subscribe . 32
7.4 gdmp job status . 33
7.5 gdmp ping . 35
7.6 gdmp publish catalogue . 36
7.7 gdmp register local file . 38
7.8 gdmp remove local file . 40
7.9 gdmp replicate get . 41
7.10 gdmp replicate put . 44
7.11 gdmp server . 46
7.12 gdmp stage ccomplete . 46
7.13 get progress report . 46
7.14 gdmp version . 47
7.15 create gridmapfile . 47
7.16 Other tools in sbin . 47

8 GDMP C++ API 48
8.1 Description of the Programming Interface . 48
8.2 Usage Instructions . 50

9 Support for a Mass Storage System 51
9.1 Motivation . 51
9.2 Flow of Control . 51
9.3 The Interface . 51
9.4 Staging States . 52
9.5 Interface to HRM . 52

10 Replica Catalogue C++ API and Command Line Tools 53
10.1 Description of the Programming Interface . 53
10.2 Usage Instructions . 53
10.3 Usage of the Replica Catalogue Command Line Tools . 54

11 BrokerInfo API 56
11.1 Description of the Programming Interface . 56
11.2 Usage Instructions . 57

12 Appendix A: Configuring GDMP with inetd 58
12.1 Inetd Background . 58
12.2 Configuration Steps done by GDMP Installation Program 58
12.3 Example Configuration for inetd . 59

13 Appendix B: Usage of Grid Security Infrastructure 60

14 Appendix C: Trouble Shooting for GDMP Server Configuration 61

3

15 Appendix D: Special Instructions for Usage in the EDG Testbed 63
15.1 Additional Hints . 63

15.1.1 gdmp register local file . 63
15.2 gdmp replicate get and others . 64
15.3 Miscellaneous . 64

4

1 Introduction

The GDMP [10, 6, 11] software tools provide automatic, asynchronous replication (mirroring) of arbitrary
files of any data format (called “files” in this document) and Objectivity database files in a Data Grid
environment. In principle, a site, where files are created, has to notify the GDMP software which in turn
notifies all the other sites in the Grid about the new files. A file is ready for mirroring only when it is
guaranteed that it is closed and no other process will write into it anymore. It is the responsibility of the
source site to determine when a file is ready for transfer. The destination sites receive a file listing of all the
new files available at the source site and can determine themselves when to start the actual data transfer.
The data transfer is done with GridFTP clients and GridFTP servers (i.e. GSI enabled and modified
wu-ftp server). Replicas can be registered in a replica catalogue (based on the Globus replica catalogue
using an LDAP [13] implementation) and thus made available to the Grid. A user has to be authenticated
and authorised before contacting any remote site. Authentication and authorisation are based on the Grid
Security Infrastructure (GSI security) layer available from Globus.

WP2 (the Data Management work package in the European DataGrid) is working on a generic replica
catalogue API. The GDMP code distribution contains a C++ API and the description of the command line
tool (see Section 10) for a central Globus replica catalogue based on LDAP. Note that GDMP internally
also uses the Globus replica catalogue for management of replica information.

To sum up, the software package contains three major parts:

• GDMP for file replication (command line tools and C++ client API). The main purpose of this User
Guide is to explain its functionality.

• a generic Replica Catalogue API in C++ and respective command line tools

• BrokerInfo: this is an API to handle information coming from Scheduling system of WP1 (Workload
Management, DataGrid) which is provided to Data Grid application running on the first DataGrid
testbed but is not required for GDMP itself. Command line tools are available, too.

2 New Features and Improvements in Version 3.0

There User Guide was originally produced for GDMP 3.0 but a few patch levels like GDMP 3.0.1, 3.0.2
and 3.0.3 have been provided. There were mainly bug fixes and thus the User Guide applies to all patch
levels. However, since GDMP 3.0.3 the script create gridmapfile contains one more argument: The VO
needs to be included.

The following is a list of new features in GDMP version 3.0 and changes from version 2.1.

1. The GDMP server can use any host or user certificate that does not require a password. It is strongly
recommended to use the host certificate/key pair (which is the default one used in the configuration
step. The GDMP Server cert (as it was used until version 2.1) is not used anymore. Details in
Section 4.5.

2. Every client request is now delegated to a GDMP server that checks for authentication/authorisation
and then contacts the remote GDMP server that needs to trust the local server. Thus, GDMP now
uses a delegation mechanism for client server interaction. This also requires that GDMP servers
rather than single users are registered in the remote GDMP specific grid-mapfile.

A client will be authenticated once per connection. Once a connection b/w client and server is
established, only one authentication is needed (no more authentication per message/request).

5

User certificates only need to be entered into the local grid-mapfile of GDMP servers where they
need to have access to. For remote interaction between GDMP servers, the servers need to trust each
other and no user certificate is used. Thus, the grid-mapfile needs to have an entry of the remote
GDMP server accessing the local server. See Section 4.5

3. New client/server messaging system is added. Now, for each request there will be an acknowledge-
ment. See the server log file gdmp server log.out for details. (It did not add any feature but just to
make the code easily maintainable.)

4. GDMP exists in the form of a full installation (GDMP server plus all client application) and a client
installation. See Section 3.4

5. gdmp replicate get will now search for all the possible replicas for the file which have been published.
If a replica is not accessible or the GDMP server for that replica is down or the replica is not stagable
on the remote GDMP server, gdmp replicate get will go for the next replica to transfer.

Example: If a file with fileID ”shahzad.fnal.gov .home.data.file01” is available on 3 GDMP hosts
gdmp1, gdmp2 and gdmp3, the GDMP client will try to transfer this file from gdmp1. If gdmp1 is
down or file is not on disk and not stagable then gdmp client will skip this host and go for gdmp2
and so on.

6. A GDMP client is now independent of installation and storage directories for file/objectivity of a
remote GDMP server. Now, the remote GDMP administrator can change the installation directory
of GDMP or storage directories and he/she does not need to inform other GDMP sites about it.
These attributes will be obtained by the client from the GDMP server at run time.

However, we do not recommend to change the storage directories since these directory might be
stored in the Information Service (as it is the case for EDG).

7. C++ API to GDMP client commands (see Section 8).

8. The command line tool gdmp filter catalogue does not exist anymore but now the filters can be
flexibly applied as command line arguments.

9. Hierarchical structure of GDMP configuration files that allow a single server to be used for multiple
Virtual Organisations. Instead of a single gdmp.conf file, there are now a gdmp.conf, gdmp.shared.conf
and gdmp.private.conf files. See Section 4.

10. “real” multiple VO support: one GDMP server can server multiple VOs and listens only on one port.
In GDMP 2.1, we had several ports for each VO.

11. The directory utils has been changed to sbin.

12. Logging of the server output is new: all log information (stdout and stderr) is now in file
GDMP INSTALL DIR/var/gdmp server log.out. gdmp server log.err does not exist anymore.

13. new command line tools: gdmp job status, gdmp replicate put and gdmp remove local file

14. changes of variables in the GDMP configuration file:

• GDMP FLATFILE ROOT DIR is now called GDMP STORAGE DIR

• GDMP OBJY ROOT DIR is now called GDMP OBJY STORAGE DIR

• GDMP REP CAT FLATFILE COLL NAME is now called GDMP REP CAT FILE COLL NAME

6

• GDMP REP CAT FLATFILE COLL URL is now called GDMP REP CAT FILE COLL URL

15. several new and detailed examples have been added to the Sections 6 and 7

16. description of GDMP monitoring tool: GDMP Heartbeat Monitor added. See Section 6.9

17. Command line tools for the C++ Replica Catalogue API have been provided and can be used
independently of GDMP to access the Globus Replica Catalogue. See Section 10 for details.

18. Now it is possible to automatically create rpms using gmake.

19. The installation directory structure for supporting multiple VOs has been changed.

20. The configuration requires new grid-mapfiles to be installed in the VO specific directories. For EDG
only, a script to automatically create/update these files has been provided. Such a script requests a
gatekeeper to be installed on the SEs and the hostcert.pem to be user readeable.

Note that GDMP 3.0 is not backwards compatible to any other previous GDMP versions.

3 Software Installation

In the following section we give detailed instructions for the installation of the software package. We provide
a source code distribution as well as a binary distribution and explain both installation procedures.

3.1 Required Software

The GDMP software runs and has been tested on Linux RedHat 6.1 and 6.2 on top of Globus Toolkit
2.0 Beta 21 (EDG distribution) and Globus 2.0 beta (Globus distribution). The GDMP software consists
of several executables and a server named gdmp server which runs using the Internet daemon (inetd) (see
Section 12 for more details) at the host that produces files. The host has to be reachable by the “outside
world” and cannot be behind the local firewall since permanent network connections to this machine are
required. The same is true for the FTP server.

A site has to have the following software installed locally:

• GDMP software version 3.0

• Globus Toolkit 2.0 Beta 21 (special release for European DataGrid) (including the WU-FTP server),
http://marianne.in2p3.fr/datagrid/testbed1/globus/globus-2.0-b21.html,
or Globus 2.0 beta (Globus release)

• g++ compiler gcc-2.95.2

• GNU Make version 3.77 or higher

• GNU Autoconf version 2.13

• GNU libtool 1.4

• GNU automake 1.4-p2

• GNU m4 1.4

• RPMv3 or higher

7

• classads-0.0.edg2 (for BrokerInfor only !)

GDMP can be used with threaded and non-threaded Globus libraries but the RPMs (see Section 3.3)
are built with non-threaded Globus libraries.

GDMP uses file locks and they have to be enabled on the system where GDMP is installed.
In case Objectivity files are replicated, Objectivity/DB Version 5.x or 6.x is required. Furthermore,

the Objectivity bootfile as well as all the Objectivity database files have to be reachable by the FTP and
the GDMP server. This guarantees a continuous data transfer from the local to the remote disk via FTP.
File access via the Objectivity AMS is not supported through GDMP.

If the BrokerInfo library is built/used, also the Condor ClassAd v2.6 software must be installed and
available to users.

Note that for a binary distribution the GNU Autoconf and lib tools are not required.

3.2 Installation Instructions

The following instructions apply to the source code distribution. Before starting the compilation, the
following environment variables can be set or configured with configure (see below):

GLOBUS LOCATION: base directory of the Globus installation

OBJY DIR: base directory for Objectivity installation - only required if you plan to build GDMP with
Objectivity support.

CLASSAD DIR: If you plan to build the BrokerInfo library (not required for GDMP nor the Replica Cata-
logue, the environment variable CLASSAD DIR has to point to the Condor ClassAd installation direc-
tory.

After unpacking the GDMP source distribution tar file, or getting the code directly from the CVS
repository, change your working directory to be the GDMP base directory and run the following command:

./bootstrap

At this point you are ready to run the configure command. The configure command should be invoked
as follows:

./configure [option] where option can be the following:

--help

--prefix=<installation dir> it is used to specify the GDMP installation dir. The default in-
stallation dir is /opt/edg.

--enable-brokerinfo it is used to enable the build of the BrokerInfo User API library. Note that
the BrokerInfo API is provided by the Workload management work package and is not required
for GDMP. By default this option is turned off. If the environment variable CLASSAD DIR is not
set, you can specify the ClassAd installation directory using the option
--with-classad-install=<dir>.

--enable-gdmp it is used to build the GDMP package and the Replica Catalogue User API library.
By default this option is turned on. You can use the option --disable-gdmp to only build the
Replica Catalogue User API library.

8

--with-objectivity it is used to enable Objectivity support. By default this option is turned
on. If the environment variable OBJY DIR is not set, you can specify the ClassAd installation
directory using the option --with-objectivity-install=<dir>.

--with-globus-install=<dir> allows to specify the Globus install directory without setting the
environment variable

--with-classad-install=<dir> specify a non-default classadd install directory

--with-globus-flavor=flavor allows to specify a specific Globus flavour. Possible values are
gcc32dbgpthr, the default, and gcc32dbg.

--with-rpm-dir=<dir> By default, gmake rpm tries to build the binary and source RPMs in your
working directory. One can use this option to create RPMs in a directory given by <dir>.

During the configure step, a spec file (gdmp[-objy].spec) will be produced in the GDMP source directory
to produce a flavour specific version with or without Objectivity.

gmake

Run gmake in the GDMP source code directory. Be careful to use the GNU distribution of make.
Proprietary versions do not work all the time. (GDMP, RC, BrokerInfo have only been built successfully
on RedHat6.1 and RedHat6.2).

gmake userdoc

gmake apidoc

These two commands are equivalent. They make sure that the documentation exists in the directory
doc.

gmake install

In order to install the package in the installation directory specified by the –prefix option during the
”configure” step, you can now issue the command gmake install in the GDMP source tree.

gmake install-client

In contrast to gmake install, gmake install-client only installs the client part of GDMP, i.e. only the client
command line tools without the GDMP server. See 3.4 for more details.

gmake -i dist

The command gmake -i dist will produce in the GDMP source directory a binary gzipped tar ball of
the GDMP distribution. This tar ball can be unwound on a different machine. This step in not required
for each installation. This tar ball can be used as source for the RPM creation.

gmake rpm

This step is only required if source and binary RPMs have to be built. In detail, it invokes gmake -i dist

and then creates RPMs for the packages enabled during the configure process. By default only gdmp,
gdmp-client and ReplicaCatalogue RPMs will be produced. If the configure option –enable-brokerinfo has
been used, then also the BrokerInfo RPM will be produced.

By default, the RPMs are created in the current working directory but the directory can be changed
with the option --with-rpm-dir for configure (see above).

The command creates the following sub directories starting from the current working directory or
defined with --with-rpm-dir:

9

rpm/redhat/BUILD

rpm/redhat/RPMS

rpm/redhat/SOURCES

rpm/redhat/SPECS

rpm/redhat/SRPMS

In the directory RPMS you will find the binary RPMs for GDMP (e.g. gdmp-3.0-0.i386.rpm) and in
the directory SRPMS the source RPMs will be created (e.g. gdmp-3.0-0.src.rpm)

gmake clean

Cleans up the object files and binary files created with gmake.

gmake clean-tree

For producing tar files and source RPMs it is recommendable to clean up all files that are not required
anymore like Makefile.in etc. gmake clean removes all the files and only leaves the ones that are necessary
for code distribution.

rpm -ba gdmp[-objy].spec

In order to create an RPM for GDMP 3.0, take the tar ball created during the previous step and copy
it into the rpm SOURCES directory, usually located in /usr/src/redhat/SOURCES. Copy the generated
spec file (gdmp[-objy].spec) into the rpm SPECS directory, usually located in /usr/src/redhat/SPECS.
Make sure the PATH for root is set in such a way that the GNU autotools, gmake and the compiler can be
used. Execute this command as root.

3.3 RPM Installation

In order to install the GDMP RPM with a given flavour (Objectivity or not) execute the following command
as root:

rpm -ivh [--prefix <installdir>] gdmp[-objy]-3.0-0.i386.rpm

By default the rpm installs the software in the /opt/edg/gdmp directory. Using the –prefix directive,
you can relocate the software and install it under a different directory.

If you want to install the rpm as a non-root user, you should have a private copy of the RPM databases
in a private directory (you can copy all *.rpm files from /var/lib/rpm in a directory where you have write
access) or you should have write access to the default RPM database directory /var/lib/rpm and the rpm
files in that directory. Then you can use the command:

rpm -ivh [--prefix <installdir>] [--dbpath <RPM database dir>] \

gdmp[-objy]-3.0-0.i386.rpm

where <installdir> is the directory where you want to install the software and <RPM database dir>

is your own private RPM database directory (you do not need to specify such a parameter if you have
write access to the default /var/lib/rpm dir and its content).

After installing the binary RPM, the user needs to make sure that GDMP INSTALL DIR/lib1 is included
in LD LIBRARY PATH.

Furthermore, the script configure gdmp can be used as root to execute the configuration root steps.
In addition to binary RPMs, also source RPMs (gdmp[-objy]-3.0-0.src.rpm are available on the

GDMP web page under “Software” at: http://cmsdoc.cern.ch/cms/grid
For further information on RPM please consult the man pages or http://www.rpm.org.

1GDMP INSTALL DIR is set in gdmp.shared.conf

10

3.3.1 Installing Source RPMs as non-root User

It can be done as normal Unix user (i.e. root access is not required) but the file ∼/.rpmmacros needs to
be in place and contain the right definitions for the topdir. In particular the topdir needs to be defined
as a user subdirectory. Also, a local database directory for rpm (RPMdb) needs to be created in the user
area and the .rpmmacros should contain the right definition for it.

In order to create a correct ∼/.rpmmacros file, copy the file /usr/lib/rpm/macros in ∼/.rpmmacros
and change it to contain the right definitions for topdir and dbpath.

To populate the rpm database directory, copy the rpm files from /var/lib/rpm to the user created local
RPM database directory.

Here is the procedure described step by step:

1. copy the source RPM that you want to install wherever you want

2. create the RPMdb directory + copy rpm files (mkdir ∼/RPMdb)

3. create the ∼/.rpmmacros file as described above, defining in this example the topdir to be ∼ and
dbpath to be ∼/RPMdb

4. create the RPM topdir structure as follows:

mkdir -p ~/rpm/redhat/SOURCES

mkdir -p ~/rpm/redhat/BUILD

mkdir -p ~/rpm/redhat/RPMS

mkdir -p ~/rpm/redhat/SRPMS

mkdir -p ~/rpm/redhat/SPECS

5. run rpm -ivh --dbpath ∼/RPMdb source-rpmfile.rpm

no –prefix is required, a tar.gz file will be created in: ∼/rpm/redhat/SOURCES

3.4 Full Installation versus GDMP Client Installation

By default, the GDMP software tool consists of the GDMP server plus several GDMP client tools. The
GDMP RPMs gdmp[-objy]*.rpm by default install the GDMP server as well as all client applications.
This installation is required on the Storage Element. This also means that users running GDMP client
applications need to have valid accounts and access to the Storage Element. i.e. the host where GDMP is
installed. We call this the full installation where all possible GDMP tools are installed.

In several cases (e.g. in the EU DataGrid testbed setup), users do not have access to the Storage
Element but need to run GDMP client commands from Worker Nodes within the Computing Element.
Thus, a GDMP Client installation exists that only installs a minimal set of GDMP client command
line tools that are required to successfully use GDMP from remote sites. The following tools are installed:

gdmp get catalogue
gdmp host subscribe
gdmp job status
gdmp ping
gdmp publish catalogue
gdmp register local file
gdmp remove local file
gdmp replicate get

11

gdmp replicate put

For the client installation there exist separate RPMs: gdmp-client[-objy]*.rpm. Install the GDMP
client RPMs on each host from where users need to remotely access GDMP servers.

4 Configuration Instructions

Once GDMP is installed properly as described in Section 3, the GDMP server and the client applications
need to be configured and the GDMP configuration files need to be edited. Details on the configuration
files are given below and we refer to Section 4.2 to do the actual configuration.

4.1 GDMP Configuration Files

In the GDMP configuration file, parameters like hostname, port where the server is running, storage direc-
tories, Replica Catalogue information, GDMP server and Globus installation path etc. need to be stored.
Much of the information like storage directories or locations of scripts for MSS or notification are specific
to a Virtual Organisation (VO). Since a single GDMP server shall not only serve a single Virtual Organi-
sations but several ones, we need a separation of the configuration files and give access to administrators
for different VOs. The configuration files gdmp.shared.conf, gdmp.conf and gdmp.private.conf need
to be managed as described in the following subsections.

All values are separated with a “=” and a sample configuration is given below. No extra characters are
allowed after the values specified. Some variables are optional (O) and others are compulsory (C). Please
refer to the configuration files themselves when you configure GDMP in order to get some additional
comments. Here, we give examples for a possible configuration. In the example below we assume that
GDMP is installed on host1.cern.ch and a replica catalogue service on a second machine called host2.cern.ch.

Most of the values are set automatically or can be configured with configure gdmp which is explained
in detail in Section 4.2.

4.1.1 gdmp.shared.conf

Even if several VOs are used for the GDMP server, the server has configuration parameters that are
common to all VOs and thus shared among them. Thus, the file gdmp.shared.conf is only set up once per
GDMP installation as opposed to the other two configuration files (gdmp.conf and gdmp.private.conf, see
below). These parameters are stored in the file gdmp.shared.conf and contain following information:

• GDMP INSTALL DIR=/opt/edg: (C) - this variable has to be identical with the path name indicated
with ./configure --prefix for the source code distribution (i.e. it points to the GDMP install
directory). GDMP client applications require this path.

• GDMP LOCAL DOMAIN=cern.ch: (O) - domain name of GDMP host.

• GDMP LOCAL HOST=host1.cern.ch: (C)- local host name where the GDMP server is installed.

• GDMP PORT NUMBER=2000: (C) - Port number on which the GDMP server is listening.

• GLOBUS LOCATION=/opt/globus: (C) - Globus installation directory

• OBJECTIVITY DIR=/usr/local/bin: (O) - Objectivity installation directory - only required if Ob-
jectivity database files are replicated

12

• ORBACUS DIR=/usr/local/bin: - (O) - Orbacus installation directory - only required if MSS interface
to HRM is used, see Section 9.

• GDMP DISK BLOCKSIZE=1024: (O) - GDMP uses the command df for checking the disk space. The
default option for df is a block size of 1024. See Section 6.8.

• GDMP DISKUSAGE FACTOR=1.1: (O) - A file will be transferred if

(disk_space_available) > (filesize * GDMP_DISKUSAGE_FACTOR)

The default value is 1.1. If it is set to than 0, the value will be used. See Section 6.8.

All the compulsory parameters above will be set either by default or with configure gdmp (see Section
4.2) and normally do not need to be edited.

4.1.2 gdmp.conf and GDMP CONFIG FILE

Every GDMP client as well as the GDMP server needs to have the file gdmp.conf set up correctly in order
to use GDMP commands. The following configuration file contains VO specific information as well as a
link to the configuration file gdmp.shared.conf.

• GDMP SHARED CONF=/opt/etc/gdmp.shared.conf: (C) - points to the shared configuration file
gdmp.shared.conf

• GDMP SERVICE NAME=host/host1.cern.ch: (C) - The GDMP server needs to use a local certificate
and each client requires a service name in order to contact a GDMP server. The service name is
part of the X.509 subject of the GDMP server and thus indicates the CN (Common Name) value of
GDMP server certificate. We assume that the server uses a host certificate.

• GDMP VIRTUAL ORG=cms: (O) - The name of a specific VO can be given here, like cms, atlas, biomed
etc. The varibale should not have any ” ”(space char) in it. Try to use alphanumeric characters.
For each VO you should have a directory ${GDMP INSTALL DIR}/etc/${GDMP VIRTUAL ORG}
and place the file gdmp.conf in that directory.

For instance, if GDMP VIRTUAL ORG=cms then you should have this file in the directory
$GDMP INSTALL DIR/etc/cms.

• GDMP CONFIG DIR=${GDMP INSTALL DIR}/etc/${GDMP VIRTUAL ORG}: (C) - Defines the path of the
configuration directory.

• GDMP VAR DIR=${GDMP INSTALL DIR}/var/${GDMP VIRTUAL ORG}: (C) - Defines the path of the var
directory.

• GDMP TMP DIR=${GDMP INSTALL DIR}/tmp/${GDMP VIRTUAL ORG}: (C) - Defines the path of the tmp
directory.

• GDMP GRID MAPFILE=/etc/grid-security/grid-mapfile: (C) - For each VO, a separate GDMP
grid-mapfile can to be configured. The format of the file is similar to the Globus grid-mapfile except
that no local user id is required. See server security in Section 4.5.

• GDMP SERVER PROXY=${GDMP INSTALL DIR}/etc/gdmp server.proxy: (C) - For each VO, as sepa-
rate server proxy can be used but we recommend to use only one for the entire server.

13

• GDMP PRIVATE CONF=${GDMP CONFIG DIR}/gdmp.private.conf: (C) - For each VO, a private con-
figuration file (see Section 4.1.3) has to be defined.

• GDMP STORAGE DIR=/pool/data/files: (C) - A common directory path for all physical files has to
be provided. All physical filenames then have to contain this path in their path names.

• GDMP STAGE FROM MSS=/opt/edg/sbin/stage from mss: (O) - used for staging a file from a mass
storage system to a disk pool. Refer to Section 9 for details.

• GDMP STAGE TO MSS=/opt/edg/sbin/stage to mss: (O) - used for staging a file from a disk pool to
a mass storage system. Refer to Section 9 for details.

• GDMP FILE CATALOG SCRIPT: (O) create a listing of files in a directory. If you don’t set this variable,
GDMP INSTALL DIR/sbin/create file export catalog will be used to create a file list. Refer to the
gdmp.conf files for more detailed instructions to create this script.

• GDMP NOTIFICATION FOR REPLICATE GET=/opt/edg/sbin/notifcation get: (O) - when a remote
site has successfully transferred a file from the local site, the local server is notified and the stated
script is called (see Section 6.6).

• GDMP NOTIFICATION FOR PUBLISH CATALOGUE=/opt/edg/sbin/notifcation publish: (O) - a noti-
fication script is called when the local site publishes the export catalogue (see Section 6.6).

• GDMP OBJY STORAGE DIR=/pool/objy: (C) - A common directory path for all physical Objectivity
files has to be provided. All Objectivity filenames then have to contain this path in their path names.

• OO FD BOOT=/pool/objy/example federation.boot: (O) - boot file path for Objectivity federation.

• DBHOST=${GDMP LOCAL HOST: (C) - This is the DB host name which you want to use with -host option
of ooattach for Objeectivity files. This will be helpful to attach DB files to a remote federation while
the files are sitting on a NFS mounted system.

• GDMP DEFAULT NEW FDID=12345: (O) - if a new federation is created by GDMP, it will assign the
following federation ID. By default it is assumed that the federation exists already.

• GDMP SERVER LOG=YES: By default, the GDMP Server logs all send/receive messages. This behaviour
can be switched of by setting this variable to NO.

By default, the file gdmp.conf is supposed to be in /opt/edg/etc but can be put to any user defined
location. If a user defined location is used, the environment variable GDMP CONFIG FILE has to be set and
point to the location of the file. Note that this is the only environment variable that needs to be set in
order to run GDMP client applications!

The file permissions of gdmp.conf need to be set to 644, i.e. read/writable to the Unix user running
the GDMP server and read-only to user users. configure gdmp (see Section 4.2) takes care of that.

4.1.3 gdmp.private.conf

In gdmp.private.conf mainly private information about the Globus Replica Catalogue (LDAP information)
(see also Section 5.3) is stored. Some information like GDMP REP CAT MANAGER PWD is only re-
quired if the Replica Catalogue does not support GSI authentication. We recommend to use GSI for higher
security. For this information, please check with your VO since many of the parameters are VO specific
like collection names etc. For the GDMP client installation, this file is not visible.

14

• GDMP REP CAT HOST=ldap://host2.cern.ch:2010: Information about the LDAP server hosting the
Replica Catalogue, in the format: <protocol>://<hostname>:<port>.

• GDMP REP CAT NAME=replica-catalogue: Name of the Replica Catalogue. Note that there are no
LDAP specific parameters like dc or cn but only the common name of the collection!

• GDMP REP CAT MANAGER DN=RCManager: (C/O) these are compulsory parameters if a the Globus
replica catalogue based on LDAP [13] is used. The parameters are specific to the LDAP setup
and need to be checked with the administrator of the replica catalogue. It is only needed when
publishing files to the LDAP replica catalogue. Note that there are no LDAP specific parameters
like cn !

• GDMP REP CAT MANAGER PWD=secret: (C) - this password is required if new information needs to be
inserted into the LDAP replica catalogue. For search operations, the pass word is not required. The
pass word is not required if GSI is used for the Replica Catalogue.

• GDMP REP CAT CN=dc=host2, dc=cern, dc=ch: CN (Common Name) of Replica Catalogue host.
Note that here all LDAP specific parameters like dc are required.

• GDMP REP CAT FILE COLL NAME=file-collection: (C) - Collection name of the Replica Catalogue
for file collection. The value is the CN only and no LDAP specific parameters like dc or cn are
required.

• GDMP REP CAT OBJYFILE COLL NAME=objectivity-file-collection: (O) - Collection name of the
Replica Catalogue for Objectivity file collection. The value is the CN only and no LDAP specific
parameters like dc or cn are required. In more detail, files and Objectivity files are separated in the
replica catalogue. All files are in one collection whereas all Objectivity files are in another collection.
A collection needs to be identified by a name which is then used in the Globus replica catalogue.

The following variables normally do not need to be modified since they are constructed
from the ones above:

• GDMP_REP_CAT_MANAGER_DN=cn=${GDMP_REP_CAT_MANAGER_CN}, ${GDMP_REP_CAT_CN}

• GDMP REP CAT URL=${GDMP REP CAT HOST}/rc=${GDMP REP CAT NAME}, ${GDMP REP CAT CN}

• GDMP_REP_CAT_FILE_COLL_URL=${GDMP_REP_CAT_HOST}/\

lc=${GDMP_REP_CAT_FILE_COLL_NAME}, rc=${GDMP_REP_CAT_NAME}, ${GDMP_REP_CAT_CN}

• GDMP_REP_CAT_OBJECTIVITY_COLL_URL=${GDMP_REP_CAT_HOST}/\

lc=${GDMP_REP_CAT_OBJYFILE_COLL_NAME}, rc=${GDMP_REP_CAT_NAME}, ${GDMP_REP_CAT_CN}

4.2 configure gdmp

We assume that GDMP has been installed successfully as described in Section 3 and now explain the
configuration step. By default, GDMP is configured in a way that it is started via the Internet daemon
(inetd). However, the GDMP server can also be configured and started in stand-alone mode (see below).
GDMP can be configured automatically with sbin/configure gdmp:

configure_gdmp <gdmp-install-dir> <userid> <port> [<vo_name>] [standalone]

The variables <vo name> and standalone are optional whereas the first three variables are compulsory.
Details in the following subsections.

15

4.2.1 GDMP Server Configuration with inetd

The command configure gdmp is executed as root and will properly configure the GDMP server and
the system files (/etc/services and /etc/inetd). The script requires three compulsory input parameters:
GDMP INSTALL DIR, userid and port. The GDMP server will run under the user-ID userid and on the
specified port.

In detail, configure gdmp updates the inetd configuration file for the GDMP server. Inetd will accept
incoming requests on a certain port and then calls the GDMP server to handle the request. Note that
by default GDMP will be assigned a service called “gdmp-server”. If the file /etc/services is edited
manually, please make sure that the GDMP server name needs to be “gdmp-server-*” where “*” should
only be a VO specific name if used in the EU DataGrid.

The file GDMP INSTALL DIR/sbin/gdmp server start handles these interactions and is configured au-
tomatically by the installation program. Note that the script gdmp server start is the main script for
starting the GDMP server and is modified automatically for the specific installation. For further informa-
tion on inetd, an example configuration and possible problem shooting refer to Appendix A.

4.2.2 Standalone GDMP server

The GDMP server can also be configured as a standalone server using the option standalone for the
configuration script. The script also makes sure that the following environment variables are set properly.
Note that the configuration script will do set the following two environment variables automatically. Only
if you do not use the configuration script, you need to set the variables !

• LD LIBRARY PATH needs to contain the GDMP library (libgdmp).

• GDMP CONFIG FILE needs to point to the configuration file gdmp.conf for the GDMP server.

Once the server is configured properly with sbin/configure gdmp, it can be started, stoped etc. via the
commands:

/etc/rc.d/init.d/gdmp_server start|stop|status|restart|reload|condrestart

Note that only the owner of the server process can stop the server whereas everybody can get the status
of the server and see if it is running.

Final Remarks

By default, the location of “functions” is /etc/init.d in RedHat. However, in the EDG testbed we use the
directory /etc/rc.d/init.d (note the additional directory “rc.d”) and thus all the gdmp server specific files
are there.

For information on the libaries used in the testbed, see:

[userid@testbed008] more /etc/ld.so.conf

/usr/X11R6/lib

/usr/kerberos/lib

/usr/i486-linux-libc5/lib

/usr/local/lib

/opt/globus/lib

/opt/edg/lib

16

4.3 Configuration for Multiple VO support

The following section can be skipped if you only need one GDMP installation for a single experiment per
machine. Here we describe the configuration step to use one GDMP installation for several VOs.

For the European DataGrid testbed it is required to have one GDMP installation working for several
Virtual Organisations on one Storage Element (SE) since one SE is used by several VOs. In other words,
for each Virtual Organisation (VO) like CMS or Atlas, a GDMP installation needs to exist and file access
on the GDMP storage directories needs to be managed. For instance, the VO cms uses the disk space
/home/files/cms and the VO alice uses the disk space /home/files/alice on the same machine. When users
connect to the GDMP server, they have to be mapped to a particular VO and then they can operate on
files that are specific to this VO. The GDMP server will listen on one port only for all possible VOs.

The following configuration steps contain a few more steps than pointed out in the previous subsections.
Please follow these steps below rather than the privous ones.

For each VO, one needs to manage an additional gdmp.conf and gdmp.shared.conf file in the directory
GDMP INSTALL DIR/etc/<vo-name>.

1. Create a Unix user gdmp on the SE. We assume that the GDMP server runs as user gdmp.

2. Create a Unix group ID on the SE with name equal to <vo name>.

3. Create an area (i.e. a directory on the local disk of the Storage Element) owned by the user gdmp
and writeable by the VO group in the area eventually exported by the SE to the closest CEs. Let’s
call it /home/gdmpstorage/<vo name>. In case of multiple VOs, the subdirs vo name should be
writeable by the VO group and the directory group sticky bit should be set [e.g.: chmod g+ws
/home/gdmpstorage/¡vo name¿]. Note that /home/gdmpstorage should be also the mount point
advertised by the close CEs for this SE if the ”file” protocol is supported in the CE Information
Providers. Note for each VO one GDMP STORAGE DIR needs to be configured. For this example,
GDMP STORAGE DIR=/home/gdmpstorage/cms. to sum up, the following file system operations
need to be done and we assume that we set up GDMP for the VO CMS:

mkdir /home/gdmpstorage

mkdir /home/gdmpstorage/cms

chown gdmp /home/gdmpstorage; chmod g+ws /home/gdmpstorage

chown gdmp:cms /home/gdmpstorage/cms; chmod g+ws /home/gdmpstorage/cms

4. Run the script /opt/edg/sbin/configure gdmp as root with the following arguments:

/opt/edg/sbin/configure_gdmp /opt/edg gdmp 2000 <vo_name>

Note that we assume again that the server is running as user gdmp.

5. The configure gdmp script will change the permissions and ownership of the following files and
directories:

/opt/edg/etc/[<vo_name>]

/opt/edg/var/[<vo_name>]

/opt/edg/tmp/[<vo_name>]

17

to be owned by the user gdmp and readable by the VO group ID.

6. The configure gdmp script creates the following empty files and make them owned by the user gdmp
and readable by the VO group ID:

touch /opt/edg/<vo_name>/etc/export_catalogue

chmod a+rw /opt/edg/<vo_name>/etc/export_catalogue

touch /opt/edg/<vo_name>/etc/import_catalogue

chmod a+rw /opt/edg/<vo_name>/etc/import_catalogue

touch /opt/edg/<vo_name>/etc/local_file_catalogue

chmod a+rw /opt/edg/<vo_name>/etc/local_file_catalogue

touch /opt/edg/<vo_name>/etc/host_list

chmod a+rw /opt/edg/<vo_name>/etc/host_list

touch /opt/edg/<vo_name>/var/progress.log

chmod a+rw /opt/edg/<vo_name>/var/progress.log

touch /opt/edg/<vo_name>/var/replicate.log

chmod a+rw /opt/edg/<vo_name>/var/replicate.log

touch /opt/edg/<vo_name>/var/replicate_debug.log

chmod a+rw /opt/edg/<vo_name>/var/replicate_debug.log

7. It is the task of the site manager to set the environmental variable GDMP CONFIG FILE to point to
/opt/edg/etc/<vo name>/gdmp.conf in the profile for the VO user to which the VO certificates have
been mapped to. Also the environmental variable RC CONFIG FILE needs to point to the configuration
of the replica catalogue when the Replica Catalogue command line interface is used. For details refer
to Section 10.

8. Edit the files /opt/edg/etc/<vo name>/gdmp.conf and /opt/edg/etc/<vo name>/gdmp.private.conf

specifying missing information (see Section 4). The information regarding the hostname, the GDMP
installation directory and the port number are filled in by the configure gdmp script. The storage
directory needs to be set as follows

GDMP_STORAGE_DIR=<directory>/<vo_name>

where <directory> is /home/gdmpstorage in the example above.

9. As a final configuration step in the EU DataGrid project, the VO specific GDMP-grid-mapfiles (in
/opt/edg/etc/<vo name>/grid-mapfile) as well as the SE grid-mapfile in /etc/grid-security/grid-
mapfile have to be configured with the following script. This script needs to be executed with a
certain frequency in order to update the possible SEs and users that have access to the local GDMP
installation.

sbin/create_gridmapfile

See Section 7.15 for more details on create gridmapfile.

18

4.4 The GDMP Directories

When GDMP is installed correctly, the following directories are available in the GDMP installation tree:

bin etc userdoc include lib tmp sbin var

The directory bin contains all the GDMP client applications as well as the GDMP server. userdoc

contains the complete documentation of GDMP. var contains the log files created during program exe-
cution. The output of the GDMP server and all client applications are also redirected to a file in this
directory (gdmp server log.out).

etc contains the proxy certificate to be used by the GDMP server to authenticate itself to the other
Grid nodes, and the host list file containing information about all the subscribed remote hosts. The file
host subscribed contains all host to which the local host is subscribed.

Furthermore, it contains the import catalogue file containing information about all the files which are
to be transferred from the remote hosts and the export catalogue file containing information about the
new files on the local host that must be notified to the subscribers. Finally, also the local file catalogue

is stored here.
tmp contains temporary files maintained by the server or different clients.
include contains the C++ API (Application Program Interface) to GDMP as well as the Replica

Catalogue subdirectories API and ReplicaCatalog, respectively, as well as internal GDMP header files in
subdirectory gdmp.

Finally, libraries for the the C++ API (libgdmp client), the Replica Catalogue (libReplicaCatalog) and
GDMP in general (libgdmp) are stored in lib.

4.5 Security for GDMP server and clients

Before the GDMP server can be tested and used, it needs a certificate/key pair. We strongly recommend
to use the hostcert/hostkey pair. GDMP requires that both files are concatenated and then the file
gdmp server.proxy is used for the GDMP server for authentication and authorisation. configure gdmp

does these steps automatically but requires that the hostcert.pem and hostkey.pem files are in the default
location /etc/grid-security.

4.5.1 GDMP grid-mapfile Entries

Example: We assume the host called host1.cern.ch is supposed to run the GDMP server under the user
“gdmp” and GDMP is installed under /opt/edg. By default, the GDMP server uses the file gdmp server.proxy
in the directory /opt/edg/etc/gdmp server.proxy and we further assume that the server refers to the
grid-mapfile at its default location /etc/grid-security/grid-mapfile. host1.cern.ch consequently has
the X.509 subject name /O=Grid/O=CERN/OU=cern.ch/CN=host/host1.cern.ch. We now assume that
the user “Firstname Lastname” shall be allowed to access the local GDMP installation at host1.cern.ch.
In order to do so, the subject name needs to be inserted into the grid-mapfile of the GDMP server, i.e. the
grid-mapfile looks like follows:

”/O=Grid/O=CERN/OU=cern.ch/CN=Firstname Lastname”
Note that no Unix user needs to be specified since the GDMP server will only use the grid-mapfile

entries for authentication of the user but will do all file transfers and actions as user “gdmp”.
Whenever a client command is issued at one site, the request is sent to the local server (stated in the

gdmp.conf file) and the local server then contacts the GDMP server on behalf of the user.
Now we extend the example and assume that we have another GDMP server where we want to get

a set of files via gdmp replicate get. In detail, the user “Firstname Lastname” issues the command

19

gdmp replicate get locally on host1 which then tries to get files from host2.cern.ch. The user “First-
name Lastname” only needs to be registered in the local grid-mapfile of host1. The actual file transfer
will be done by the GDMP server which needs to be registered in the grid-mapfile of host2. Thus, the
grid-mapfile of host2.cern.ch needs to have the following entry and we assume that also on host2 the GDMP
server is running under the Unix user “gdmp”:

"/O=Grid/O=CERN/OU=cern.ch/CN=host/host1.cern.ch" gdmp

Vice versa, the subject name of host2 needs to be inserted into the grid-mapfile of host1 in order to
allow data transfer from host1 to host2.

To sum up, we assume that GDMP server at host1 knows 3 users and allows host2 to replicate files.
Thus, the grid-mapfile of host1 can look like follows:

"/O=Grid/O=CERN/OU=cern.ch/CN=Firstname1 Lastname1"

"/O=Grid/O=CERN/OU=cern.ch/CN=Firstname2 Lastname2"

"/O=Grid/O=CERN/OU=cern.ch/CN=Firstname3 Lastname3"

"/O=Grid/O=CERN/OU=cern.ch/CN=host/host2.cern.ch" gdmp

At host2, the grid-mapfile can look like follows, where the local host trusts other 2 people locally and
all the users that are registered at host1:

"/O=Grid/O=CERN/OU=cern.ch/CN=UserA Lastname1"

"/O=Grid/O=CERN/OU=cern.ch/CN=UserB Lastname2"

"/O=Grid/O=CERN/OU=cern.ch/CN=host/host1.cern.ch" gdmp

4.5.2 Configuration for multiple VOs

We now outline how multiple VOs can be configured and users can be assigned to a certain VO. We assume
that the user with CN=FirstnameA LastnameA is memember of the VO CMS and the GDMP CONFIG FILE
environment variable is set to /opt/edg/etc/cms/gdmp.conf. Note the general syntax:

GDMP_INSTALL_DIR/etc/<VO_NAME>/gdmp.conf

Since the VO wants to give exclusive access only to people in CMS, for the VO cms a separate
grid-mapfile is required (will be done automatically with configure gdmp). For instance, it is stored
in /opt/edg/etc/cms/gdmp-mapfile. In this grid-mapfile, only CMS users have to be inserted and the
GDMP server will look for the user authorisation only in this file.

Final remark

By default GDMP uses the /etc/grid-security/grid-mapfile. It is not necessary that each VO should have
its own grid-mapfile. The advantage of the VO specific grid-mapfile is that this will add more security
for that VO otherwise every user who’s DN is in /ets/grid-security/grid-mapfile file is allowed to use that
VO. The disadvantage of VO specific file is that now we should have DN of remote gdmp servers in both
/etc/grid-security/grid-mapfile and VO specific grid-mapfile.

20

4.6 Configuration for the GDMP Client Installation

The GDMP Client Installation can be configured with the script sbin/configure gdmp client with the
following arguments:

configure_gdmp_client <gdmp-local-server> <gdmp-install-dir> [<gdmp-vo>]

where the gdmp-local-server and gdmp-install-dir are compulsory arguments and the <gdmp-vo>

is optional.
Furthermore, the configuration files gdmp.conf and gdmp.shared.conf will be set properly.

5 Data Replication and Background for GDMP Usage

GDMP is a file replication tool for replicating read-only files of any data format. In addition to transferring
files from one site to another and notifying about new files created locally, the Globus replica catalogue is
used to store file information about all sites in a Virtual Organisation and having GDMP installed. For
details on replica catalogues and file replication refer to the DataGrid WP2 design document [7].

Although any file format can be used, GDMP has a particular plug-in for Objectivity files where files
are “attached” to an Objectivity federation2. Most of the command line tools are by default configured
for files rather than Objectivity files.

5.1 Directories and File Replication

GDMP manages files stored in a particular storage root directory on a local disk or mounted disk pool. It
requires all physical files to be stored in this directory structure which can be configured for each GDMP
installation and thus for each storage system. Note that we distinguish between “files” (this can be any
arbitrary file format like ROOT, ZEBRA, etc.) and Objectivity files which require particular replication
steps. GDMP also requires two different storage root directories for these two file formats.

We start with an example. We assume that a large disk pool is mounted on a host host1.cern.ch.
Files are stored in the directory /data/run1/. In the directory run1 several subdirectories can exist and
a possible directory layout is as follows:

/data/run1/day1/file1

/data/run1/day1/file2

/data/run1/day1/file3

/data/run1/day2/fileA

/data/run1/day2/fileB

GDMP requires a common root path for the directory structure since it manages several files in the
replication process. In our example the common directory and thus the storage root directory for files is
/data/run1. GDMP uses a configuration variable called GDMP STORAGE DIR which needs to be set in the
file gdmp.conf (see Section 3).

For Objectivity files a similar directory structure is required and the variable GDMP OBJY STORAGE DIR

must point to the storage root directory for Objectivity files.
The main task of GDMP is to mirror the directory structure of one storage system (called Storage

Element in DataGrid terminology) to another. Thus, a storage root directory is required on both sites
that participate in the mirroring process. Note that the storage root directory does not have to be

2We do not discuss the details of Objectivity but point out that for Objectivity database files additional replication steps

are necessary, as indicated when GDMP command line tools are explained.

21

identical on all Storage Elements but can be chosen and configured based on the local directory structure.
If we now assume that all the files above need to be replicated to a Storage Element at Fermilab, the
destination host first needs to set up a storage root directory. For example, on host1.fnal.gov (at
Fermilab), GDMP STORAGE DIR has the value /largedisk/cms/production/run1. The GDMP replication
process now can replicate files from the storage root directory on the source machine to the one on the
destination machine.

5.2 Filenames

When files are replicated, identical files (replicas) exist at multiple locations and need to be identified
uniquely. A set of identical replicas is assigned a logical filename (LFN) and each single physical file is
assigned a physical filename (PFN). In [7] we also include a transfer filename (TFN) but we do not discuss
it further and we will assume that all PFNs have the complete paths used by the Storage Element’s file
system to refer to files resident on disk. The PFN also contains the host name i.e. the domain name of
the Storage Element (see “Section 4.2 File Replication”, in [7]) where the file is located and accessible via
a Grid file transfer tool such as a GSI-enabled FTP server.

A typical example of a physical filename under the above assumptions is as follows:

pfn://host1.cern.ch/data/run1/day1/file1

We observe that when PFNs are used with GDMP, the prefix “pfn://” is not required. Once the file
is created and the PFN is available, it can be inserted to the replica catalogue that provides a global name
space for file replicas. See “Section 5.1.1 Replica Catalog” in [7] for details on replica catalogue issues.
Note that for this GDMP version we use a single replica catalogue located at a single host (rather than
a distributed replica catalogue as presented in [7]). In addition to the PFN, a logical filename must be
assigned to the physical file. In the current version of the Globus replica catalogue, the LFN is equal to the
last component of the PFN, i.e., to the file name including parts of the directory structure. This is a current
restriction that will be removed in future versions. Thus, the logical filename is created automatically by
GDMP from the physical filename complying with the implicit mapping enforced by the replica catalogue
and for the physical filename in the example above it looks as follows:

day1/file1

5.3 Globus Replica Catalogue

In this subsection we describe how the Globus replica catalogue needs to be set up to interact with GDMP.
GDMP uses the Globus replica catalogue implementation which is based on LDAP. For details on the

Globus replica catalogue refer to the user guide in [5]. The replica catalogue service is based on the LDAP
protocol and a database backend where all replica information is stored. In principle, any possible LDAP
server and a corresponding database backend can be used. The currently adopted solution is to use the
OpenLDAP server and one of the database backends supported by OpenLDAP. For Solaris and Linux
platforms we have tested the SleepyCat database backend (Sleepycat Berkeley DB 2.7.7: (08/20/99)). For
Linux we tested the OpenLDAP database backend ldbm. Details on LDAP configuration can be found in
[4].

As pointed out in Section 3, the following LDAP replica catalogue variables have to be set in gdmp.private.conf.
We give example values:
GDMP REP CAT HOST=ldap://host2.cern.ch:2010
GDMP REP CAT NAME=replica-catalogue

22

GDMP REP CAT MANAGER DN=RCManager
GDMP REP CAT MANAGER PWD=secret
GDMP REP CAT CN=dc=host2, dc=cern, dc=ch

Since we distinguish between files and Objectivity files as regards storage root directories, we need to
do the same for the replica catalogue configuration. The Globus replica catalogue provides the concept of
collections that group several logically related files. Collections are not used explicitly in the GDMP user
interface, but one collection for files and another collection for Objectivity files are implicitly created by
GDMP in the replica catalogue to manage the two types of files. Thus, the following configuration variables
have to be set in gdmp.private.conf to specify the two possible collections for files and Objectivity files,
respectively.

• GDMP REP CAT FILE COLL NAME=file-collection:

• GDMP REP CAT OBJYFILE COLL NAME=objectivity-file-collection

Note that all sites inserting information in the replica catalogue of a single Virtual Organisation, such
as an experiment in a HEP environment, need to use the same file collection.

5.3.1 Globus Replica Catalogue Security

The current (March 2002) Globus replica catalogue libraries as distributed in Globus 2.0 Beta 21 (EDG
distribution), Globus 2.0 Beta 2 (Globus distribution) do not support GSI authentication for Replica
Catalogue access.

A patch to the libraries has been provided in order to use normal GSI authentication and authorisation
for remote Replica Catalogues that are using LDAP severs. The original patch can be found at the
NorduGrid project page (http://www.quark.lu.se/grid/) but it is also packaged and distributed by EDG
and available on the EDG software distribution web page.

GDMP client commands that access the Replica Catalogue by default (e.g. gdmp publish catalogue,
gdmp replicate get and gdmp replicate put) assume that the patched libraries are installed locally. Since
the actual update to the Replica Catalogue is done by the GDMP server that uses the host proxy certificate,
the host proxy certificate needs to be given to the administrators of the Replica Catalogue server where it
needs to be registered. In other words, the standard way of GSI authentication is used.

If the patched libraries are not installed and the Replica Catalogue server allows authentication and
authorisation via clear text pass words, the GDMP client commands can use the option. In this case, the
pass word for updating the LDAP Replica Catalogue server needs to be read from the configuration file
gdmp.private.conf. Consequently, GDMP works for both options. For details on how to use clear text
pass word updates (command line option -C) refer to the GDMP client commands.

If one uses the Replica Catalogue command line tools or API, the specific user also needs to be registered
in the Replica Catalogue server for read/write access.

Configuration Details

For writing entries into the Replica Catalogue the GDMP server installation needs the patched globus replica catalog *
libraries, properly installed SASL plug-in for GSI-GSSAPI authentication (it comes with Globus, but you
have to make sure you have your SASL PATH environment set up properly to point to the directory with
globus sasl plug-ins). This especially important on systems with non-Globus LDAP installed.

In addition, one of the following libaries needs to be installed:

• libglobus sasl gssapi gsi * (EDG distribution)

23

 (producer_information)
 (producer_information)

local file catalogue local file catalogue

consumerproducer

w
id

e−
ar

ea

 n
et

w
or

k

file 1
file 2
file 3

export catalogue

file 2
file 3

import catalogue

file 1 (producer_information)

(GDMP) (GDMP)

host list host list

Globus Replica Catalogue

Figure 1: The role of the local file, export, import catalogues

• libgssapi v2 gsi *

5.4 Internal File Catalogues

GDMP uses a few catalogues that are used for internal book keeping and monitoring of the replication
process. Once a site has finished writing a set of files (or just a single file), every single file needs to
be registered in a local file catalogue which only contains files that are available at the local site. This
catalogue contains the physical filename and logical file attributes like logical filename, file size, creation
time, CRC checksum, file type. The local file catalogue is hidden from outside users and is thus only visible
to the local GDMP server. The client application gdmp register local file is used for inserting files to
this catalogue.

At a certain point in time, a site can decide to publish its local files to other Grid sites using
gdmp publish catalogue. In detail, all file entries of the local file catalogue are written into the replica
catalogue3 and also sent to subscribed sites at remote sites (see Section 6.5. A list of all newly published
files and their related information is written to a local export catalogue. The consumer site that wants
to receive files creates an import catalogue where it lists all the files that are published by the producer
and have not yet been transfered to the consumer site. The import catalogue holds the host name of the
FTP server and all related physical and logical file information for each file. Figure 1 illustrates this model
graphically.

When files are published, all required file information is read from the local file catalogue. Since
the catalogue holds file attributes like size, during the execution of the publish command the files to be
published do not need to reside on their physical location on disk but can already have been staged to a
mass storage system. Note that files have to be at the disk location when gdmp register local file is
called since file size and CRC check sum are automatically created by GDMP and then stored in the local
file catalogue.

3An insertion to the replica catalogue can also be disabled.

24

6 Using GDMP

In this section we provide information on using the GDMP server and client applications and refer to
Section 7 for detailed parameters for the command line tools.

Note: Here, we provide a quick guide. For some more usage instructions for the EU DataGrid testbed
refer to the specific documents on the following GDMP web page:

http://cmsdoc.cern.ch/cms/grid/edg-testbed

You can reach this link also through the GDMP web page directly under the side bar “Documentation”.
A definition of the Storage Element for the EDG testbed is given in a document (“GDMP User In-

structions for the European DataGrid Testbed”) on the page above. Although that document is out-dated
since it refers to GDMP 2.1, Sections 1 and 2 are still valid and also Section 3 gives some basic examples.

6.1 Quick Start Guide to run GDMP

Follow these steps to run the GDMP server and transfer files quickly and securely.
Example: Assume that files have been created on testbed008 and have to be transferred (replicated

or mirrored) from site testbed008 (A) to tbed0079 (B). In other words, users at site tbed0079 want to
retrieve a set of files from testbed008 by issuing gdmp replicate get. Several GDMP client commands are
outlined briefly and you can find more detailed examples for each client command in Section 7.

1. Server Installation - Configuration:

Register gdmp server as an inetd service or standalone server on site testbed008 as user ‘gdmp1’ and
site tbed0079 as user ‘gdmp2’. All these steps are described in the sections on installation (Sections
3 and 4). Both servers listen on port 2000.

There are no restrictions on ‘gdmp1’ and ‘gdmp2’. In other words, the GDMP servers can be
installed and configured with any possible Unix user.

You can specify the grid-mapfile in the configuration files of the server The default is /etc/grid-security/grid-mapfile.
You can make your own grid -mapfile on the same format as used by Globus and it will work
but make sure that it has correct file access permissions.

Result: The server should start. The output of the server is logged in the file:
GDMP INSTALL DIR/var/gdmp server.out

2. tbed0079 : get grid proxy and check GDMP CONFIG FILE

We issue client commands with the Unix user called userB and the CN of the user (e.g. CN=UserB)
is already registered in the grid-mapfile of tbed0079. The client needs to get a valid proxy using
grid-proxy-init.

[userB@tbed0079] grid-proxy-init

Your identity: /O=Grid/O=CERN/OU=cern.ch/CN=UserB

Enter GRID pass phrase for this identity:

Creating proxy Done

Your proxy is valid until Tue Jan 22 23:03:02 2002

For each user the environment variable GDMP CONFIG FILE needs to be configured and set cor-
rectly when the user has logged on. However, if the variable is not set, do the following (assuming
that the default GDMP installation is used without any VO):

25

[userB@tbed0079] setenv GDMP_CONFIG_FILE /opt/edg/etc/gdmp.conf

3. tbed0079 : run gdmp host subscribe

Run gdmp host subscribe as a user ’userB’, giving the host and port of the GDMP server on
testbed008.

[userB@tbed0079] gdmp_host_subscribe -r testbed008.cern.ch -p2000

Result: This should add the information about the host on tbed0079 in the
GDMP INSTALL DIR/etc/host list file at testbed008.

At the local site, entry of the remote host appears in the file host subscribed.

4. testbed008 : run gdmp register local file

Run gdmp register local file on testbed008 as user ‘userA’ where userA (CN=UserA) needs to
be in the local grid-mapfile on testbed008 and the user needs to have a valid proxy (similar as above).
In addition, the environment variable GDMP CONFIG FILE must be set properly.

[userA@testbed008] gdmp_register_local_file -d /data/run1

All files stored in the storage directory (e.g. /data/run1 in Section 5.1) are registered.

In case of Objectivity files: the lock-server of the related bootfile should be running.

Result: The files in the corresponding directory are inserted into the local file catalogue.

5. testbed008 : run gdmp publish catalogue

Run gdmp publish catalogue on site textbed008 as user ‘userA’.

[userA@testbed008] gdmp_publish_catalogue

Files can only be published if they are in the local file catalogue, i.e. gdmp register local file must
have been used in advance.

Result: This should create entries in the file GDMP INSTALL DIR/etc/import catalogue on tbed0079
which will have the details of files at testbed008. Replica information by default is inserted to
the replica catalogue. In addition, the newly published files will appear locally on testbed008
in the export catalogue GDMP INSTALL DIR/etc/export catalogue.

6. tbed0079 : run gdmp replicate get

Run gdmp replicate get on tbed0079 to actually start the file transfer.

[userB@tbed0079] gdmp_replicate_get

In case of Objectivity files, the lock-server of the OO FD BOOT should be running.

The GDMP STORAGE DIR should have enough space to hold these files.

Result: This should transfer the files from testbed008 to tbed0079 and validate them. In case of
Objectivity files, the files are attached to the federation at site B. Replica information by default
is inserted to the replica catalogue.

26

6.2 Using the GDMP Client Installation

All the examples above assume the full installation (see Section 3.4) but now we briefly explain how to use
GDMP client commands on a host where the GDMP client installation is configured properly. You first
need to make sure that your environment variable GDMP CONFIG FILE points to the VO specific gdmp.conf
file. For the example here, we assume that the GDMP client installation is installed on the Worker Node
lxshare0224.cern.ch and the possible Storage Elements are testbed008.cern.ch and tbed0079.cern.ch. Note
that both SEs are not available in the EDG testbed but we only give these examples for reference. A valid
grid-proxy needs to exist, too.

For every client command, one needs to contact a remote GDMP server since the GDMP server does
all the necessary authentication and authorisation steps and then executes the service on behalf of the
user. Thus, the remote GDMP server is always contacted with the command line options -S for the server
and -P for the port of the remote server.

[hst@lxshare0224] gdmp_ping -S tbed0079.cern.ch -P 2000

Message: The local GDMP server tbed0079.cern.ch:2000 is listening and you are an

authorized user [Thu Mar 28 09:04:11 2002]

If we want to register a file that is reachable from a GDMP server, we first need to identify the GDMP
server we want to contact with -S and -P and then need to use the option -R to indicate that directory
that is given is not a local directory but a remote one and thus local to the remote server.

[hst@lxshare0224] gdmp_register_local_file -S testbed008.cern.ch -P 2000 \

-d /home/edg-replica-manager/testfiles/cms -R

Server Message [testbed008.cern.ch:2000]: A client has been started to

register the requested files. [Thu Mar 28 09:09:31 2002]

Message: Server Log ID=gdmp_testbed008.cern.ch_32231_1017302971_1 [Thu Mar 28 09:09:31 2002]

In addition, one can specify the virtual organisation one belongs to by using the option -V.

General Remarks

In principle, there is not much difference in using GDMP client tools on a full installation or a client
installation only. If you use it on a client installation (which is normally the case in the EU DataGrid
testbed) you always need to add the optional parameters -S and -P to the client command line tool. Most
of the examples below assume the full installation but they can easily be applied to the client installation,
too.

If any of the options -S, -P or -V is used, this parameter is used not the one from a possible GDMP
configuration file!

6.3 The Mechanics of GDMP

Registering a file in the Local File Catalogue

Once files are available on disk for replication to remote sites, the files need to be registered in a local
file catalogue. This catalogue keeps track of all files that GDMP manages. GDMP mirrors file sets
(a set can also contain just a single file) and automatically detects which files have been added to the
local catalogue but have not been published yet. By inserting files into the local catalogue, GDMP
gets control over the files and the corresponding replica information. Consequently, every single file
needs to be registered first before it can be replicated. gdmp register local file needs to be used
for this. A possible local file catalogue looks like follows (in one single line):

27

file:host1.cern.ch_.pool.data.testfiles:file1:1012039680:

603077316:1001660649

Which corresponds to:

filetype:file_id:relative_file_path_under_the_root_dir:size:checksum:timestamp

filetype can either be “file” or “objectivity”. Note that file ID corresponds to a unique logical file
ID which is currently maintained by GDMP and cannot be changed. checksum is created by GDMP
using the checksum command line tool. timestamp is a integer value for a file modification time.

Creating the Export Catalogue

The export catalogue contains information about all the files which are ready to be exported to other
sites. The program gdmp publish catalogue is the trigger for the replication mechanism. This
program has to be called when new files are ready for transportation to another site. It will compare
the current and old local file catalogue. New file entries are written in the file
GDMP INSTALL DIR/etc/export catalogue which lists all the new files that have been added to the
local file catalogue since the last time gdmp publish catalogue was called.

A possible export catalogue looks like follows:

file:host1.cern.ch_.pool.data.testfiles.file1:file1

Which corresponds to:

filetype:file_ID:filename

file ID corresponds to a unique logical filename which is currently maintained by GDMP and cannot
be changed. filename is the relative path starting from the directory after storage root dir which
is either GDMP STORAGE DIR or GDMP OBJY STORAGE DIR (depending on the file type).

Publishing the Export Catalogue

The file update is based on the following fact: newly added files to the local file catalogue are detected
and a difference between the new and the old local file catalogue is created. Based on the differences
with the old catalogue, the export catalogue is created and transfered to all hosts subscribed and
listed in the file GDMP INSTALL DIR/host list. A client can only send this host list to a remote
server if the user running the client is present in the grid-mapfile(s) being used by the FTP server
and the gdmp server on the remote machine. The export catalogue is renamed to import catalogue

at the destination site in order to distinguish between imported export catalogues and locally created
export catalogues. Thus, the import catalogue holds the list of files which have been created newly
by a remote site.

A possible import catalogue looks like follows:

file:host1.cern.ch_.pool.data.testfiles.file1:file1:

/pool/data/testfiles:host1.cern.ch:3001:1

Which corresponds to:

28

filetype:file_ID:filename:storage_root_dir:hostname:port:flag

file ID corresponds to a unique logical filename which is currently maintained by GDMP and cannot
be changed. filename is the relative path starting from the directory after storage root dir which
is either GDMP STORAGE DIR or GDMP OBJY STORAGE DIR (depending on the file type). hostname and
port are the host name and port of the remote host where the file is located. In general, all
information in the import catalogue refers to the remote file where it resides physically. flag is an
internal flag to GDMP which is used when a remote file needs to be staged and is not registered in
the replica catalogue.

Transferring the files

The remote site can decide when to start the data transfer from the remote to the local site. The
program gdmp replicate get uses an FTP client library to securely transfer files. The program
transfers each of the files listed in the import catalogue automatically to the local site. Each file is
validated on arrival using the CRC checks, (is attached via ooattachdb in case of an Objectivity
file to the local federation) and the file entry is deleted from the import catalogue. Finally, a file is
registered in the replica catalogue.

6.4 Security Issues for GDMP Server and Clients

A GDMP server must run at each data production site. The port generally used is 2000, however you
can set any other port through the inetd by editing the /etc/services file. Note that you will need root
privileges to do this.

The server flags -m and -l can be used to specify the grid-mapfile and a Grid log file, respectively.
Note that the server uses its own service certificate and creates its Grid proxy automatically. Fur-

thermore, the proxy is acquired for an unlimited time while client proxies are created by the user and by
default are restricted to 12 hours. For large data transfers, the client proxy might not be available long
enough to transfer several Gigabytes. Thus, it is recommended that the transfer time for a set of files be
estimated and the proxy time be adjusted accordingly with the -hours option:

grid-proxy-init -hours xxx

where xxx corresponds to the number of hours the proxy will be available.

6.5 Subscription to Remote Servers

The Data Grid is most efficient when many hosts are part of the whole Grid and hence data is available
in many different sites. Since a new site has to announce that it is available in the Grid and ready to get
notified about the creation of files and replicas, the program gdmp host subscribe is used to subscribe
the local host to any remote host. The local host will then be integrated into the host list of the remote
host. When a remote host has written new files, the notification message and the export catalogue are
transferred to each host in the host list. Currently, a local host has to subscribe to each remote host
separately.

Even if a private grid-mapfile is used, the grid-mapfile which is used by the GridFTP server (normally,
/etc/grid-security/grid-mapfile) needs the entries of remote servers (hosts) that are allowed to transfer
files.

29

6.6 Notification

When a user publishes a local file catalogue with gdmp publish catalogue, a remote server gets notified
and calls a configurable script which can then be used by external programs to start a data transfer request.
In principle, gdmp replicate get can be executed and a fully automatic replication process can be set
up. On the other hand, a similar notification script is called at the producer site when a consumer has
successfully replicated a file. Thus, producers can keep track of consumers requesting and replicating files
and can delete files again if local storage space is required. The following two variables in gdmp.conf need
to point to the notification scripts:

GDMP_NOTIFICATION_FOR_REPLICATE_GET

GDMP_NOTIFICATION_FOR_PUBLISH_CATALOGUE

As for the replicate get notification, GDMP will pass 2 arguments to this script: 1) full file name 2)
host which has transfered the file. A possible example is as follows:
GDMP NOTIFICATION FOR REPLICATE GET /root/dir1/file1 host1.fnal.gov

For the publish notification, three arguments are passed to the script: 1) host name which has published
files 2) file type 3) filename which contains the list of all newly published files. It has the same format as
import catalogue, and so one can pass this to gdmp replicate get with the option -c . For example, a
set of files has been published:
GDMP NOTIFICATION FOR PUBLISH CATALOGUE host1.fnal.gov file /some/dir/catalogue

6.7 System States for File Replication Process

In the entire replication process, we distinguish several system states that are indicated by files with
particular extensions. Thus, one can check the current status of a file transfer and discover possible
problems. All the system states are stored in the directory var in the GDMP installation tree.

We now assume that a file “largeFile.extension” is transferred. In particular, a client at site A requests
the file from site B using gdmp replicate get. The file name is first retrieved from the import catalogue.
The file ID (stored in the local file catalogue) is used for indicating files and a particular extension (see
below) is added to a status file of 0 size in the directory var.

The file ID contains the host name and all path information including the actual file name. In principle,
the file ID corresponds to a logical filename and is unique for all replicas of this file. A file that should be
transferred from host1.cern.ch/data/file1 has the following file ID:

host1.cern.ch_.data.file1

After the host name a “ ” is attached and “/” is converted to “.” The following transfer states are
defined:

• file ID.stat: the transfer of a file is currently going on or the file has been requested for transfer.

• file ID.replicated: a file has been copied to its destination but not yet validated nor registered.

• file ID.validated: a file has been validated locally after the copy process. The validation contains
file size checks and CRC checksum comparison with the original file at the remote site.

• file ID.registered: a file has been successfully validated and registered to the local file catalogue.

• file ID.transferred: the file has already been successfully transferred, validated and registered but
not yet deleted from the import catalogue. The tool gdmp catalogue cleanup needs to be used to
delete these files plus the entries in the import catalogue. Once the file is in “transferred state”, it
can be used by applications.

30

• file ID.notified: a remote site has been notified about the correct file transfer (including validation
and registration).

• file ID.req: a file is requested from a remote site and is on tape rather than on disk. A staging
request is initiated (see Section 9 for details on mass storage systems).

• file ID.done: This file only exists for a very short time: when a staging requests has been done at
a remote site (from MSS to disk) and the local server can start to get a file. Once the file transfer
starts, the file is renamed to .stat.

In addition to the successful states, we also have a few error states:

• file ID.not validated: file validation failed

• file ID.not registered: file is not registered to the local file catalogue

• file ID.not notified: file notification failed

• file ID.error: an error has occurred during the attachment of Objectivity files.

6.8 Preliminary Space Management

For all data tranfers done with gdmp replica get and gdmp replicate put GDMP does some preliminary
space management. Before a file transfer is started, the GDMP server checks the available disk space on the
disk where GDMP STORAGE DIR is located and only transfers the file if enough disk space is available. The
variables GDMP DISK BLOCKSIZE and GDMP DISKUSGAE FACTOR in the configuration file gdmp.private.conf
can be set accordingly.

6.9 Monitoring GDMP transfers: GDMP Heartbeat Monitor

In order to find out if two full GDMP installations work properly and over a long period of time, a GDMP
Heartbeat Monitor setup exists that constantly creates and transfers files between two GDMP hosts. In
principle, the Heartbeat Monitor consists of a few scripts that use two existing GDMP installations. Note
that the GDMP Heartbeat Monitor is not part of the GDMP 3.0 release but can be down-loaded separately
from the GDMP web page (see HTTP link below) and configured with GDMP.

Each GDMP Heart Beat site has a dummy file (automatically created for you when you run the
gdmp hb setup.pl). gdmp hb publish.pl creates a unique link in GDMP STORAGE DIR for this file and
then registers that link and publishes it to other hosts. When remote sites receives this published infor-
mation, then GDMP will start the gdmp hb replicate.pl which will transfer this file. GDMP will then
make a backup of this file if not already taken and deletes the transferred file. As each site is going to
publish the same file again and again with different names, only one backup is enough. This backup will
be copied by gdmp hb stage from mss.pl into GDMP STORAGE DIR when someone make request for file
staging. gdmp hb stage to mss.pl is actually used to take the backup. When a file is successfully trans-
ferred, GDMP calls gdmp hb stage to mss.pl which take the backup for the transferred file if not already
taken.

Consequently, GDMP heart beat will not only test the functionality of register, publish and replicate but
it also utilises the GDMP NOTIFICATION FOR PUBLISH CATALOGUE, GDMP STAGE FROM MSS
and GDMP STAGE TO MSS scripts. Since GDMP heart beat uses its own VO, this will not interfere
with other VO’s files.

More information on GDMP Heartbeat Monitoring and the required software can be found at:

http://cmsdoc.cern.ch/cms/grid/gdmp_hb

31

6.10 Network Failures

In principle, each site that has not been reachable for some time is responsible for getting the latest infor-
mation from other sites. Once a site is up and the network is working properly, the file gdmp get catalogue

can be used to get the latest information from any site.
When a file transfer fails because of a network problem during the data transfer process, this transfer

can be resumed afterwards when the network is back again. Thus, the data transfer continues from the
latest checkpoint and prevents re-sending the whole file. This is based on the “resume” feature of the
nc-ftp client.

6.11 Some Program Restrictions

The server should be run on a machine which is accessible from the outside world.
The Objectivity ”bootfilepath” given to the configuration file should be exactly the same as specified

in the Objectivity’s catalogue. Note that alias names for directories cannot be used.

6.12 Server Logfiles

Every time a client command is executed, the client internally contacts the GDMP server that by default
logs all communication in the file GDMP VAR DIR/gdmp server log.out. For instance, if gdmp ping is
used, the additional log entry looks like follows:

===>START LOGGING OUTPUT FOR PROCESS=gdmp_testbed008.cern.ch_30316_1016127475_1

Server Message: a new client has connected [Thu Mar 14 18:37:55 2002]

Message Received=testbed008.cern.ch\:3333:testbed008.cern.ch_30282_1016127475_4\:servicename\: [Thu Mar 14 18:37:55 2002]

Message

Send=testbed008.cern.ch_30282_1016127475_4:ack:0::host/testbed008.cern.ch

[Thu Mar 14 18:37:55 2002]

Message Received=testbed008.cern.ch\:3333:testbed008.cern.ch_30282_1016127475_8\:authenticate [Thu Mar 14 1

8:37:55 2002]

Message: CN=/O=Grid/O=CERN/OU=cern.ch/CN=Heinz Stockinger authorized. [Thu Mar 14 18:37:55 2002]

Message Send=testbed008.cern.ch_30282_1016127475_8:ack:0:Authorized [Thu Mar 14 18:37:55 2002]

Message

Received=testbed008.cern.ch\:3333:testbed008.cern.ch_30282_1016127475_15\:pingserver\:

testbed008.cern.ch\:3333\:0\:30 [Thu Mar 14 18:37:55 2002]

Message Send=testbed008.cern.ch_30282_1016127475_15:ack:0:GDMP Server is listening [Thu Mar 14 18:37:55 2002]

Message Received=testbed008.cern.ch\:3333:testbed008.cern.ch_30282_1016127475_18\:close [Thu Mar 14 18:37:5

5 2002]

Message Send=testbed008.cern.ch_30282_1016127475_18:ack:0: [Thu Mar 14 18:37:55 2002]

Server Message: client has disconnected [Thu Mar 14 18:37:55 2002]

===>END LOGGING OUTPUT FOR PROCESS=gdmp_testbed008.cern.ch_30316_1016127475_1

For each client command, the server starts and ends logging with START LOGGING and END LOG-
GING respectively and temporarily creates a file in GDMP TMP DIR. In the example above, the tem-
porary log file is gdmp testbed008.cern.ch 30316 1016127475 1. Once the process has finished, the file is
appended to the gdmp server log.out file.

For GDMP client commands gdmp replicate get and gdmp replicate put, the output of the methods
is stored in the server log file and it needs to be accessed via a call to gdmp job status (see Section 7.4) in
order to read it at the client side.

32

By default, the server log file for each GDMP client application (or job) is stored in
GDMP INSTALL DIR/var/gdmp server log.out but for the following tools the server log can be created
in an additional file called GDMP TMP DIR/<logfile id>:

gdmp get catalogue
gdmp host subscribe
gdmp ping
gdmp publish catalogue
gdmp register local file gdmp remove local file
gdmp replicate get
gdmp replicate put

Since for each of these commands the three command line options -L, -O and -D are used in the same
way, we describe the functionality here.

[-L <logfile_id>] GDMP Server will log information in

${GDMP_TMP_DIR}/<logfile_id>

[-O] don’t save server output in log file

${GDMP_VAR_DIR}/gdmp_server_log.out

[-D] don’t delete the temp server log file

By using the command line option -L, the logfile id for the log file can be specified. Note that the
file will always be stored in the directory GDMP TMP DIR or GDMP TMP DIR/<VO NAME> if a VO is
used. The option -O can be used if the current client command shall not be logged in the standard log file
etc/gdmp server log.out.

Conventionally, the GDMP server creates a temporary log file for each job, attaches the temporary file
to the gdmp server log.out and then deletes the temporary file again. If this temporary file should not be
deleted, one can use the option -D. The clients which uses the -D option will get a <logfile id> back
from the server which could be use by gdmp job status to see the log information.

Note that the logfile ID indicates on which host the file is to find ! gdmp job status can then be sent
to the specified host.

7 GDMP Tools

In this section we describe the command line tools for GDMP and give details on the interaction with
remote servers and the replica catalogue.

7.1 gdmp catalogue cleanup

This tool provides a crash recovery functionality in cases when a remote site using a Mass Storage System
has crashed. In addition, the import catalogue is cleaned up for all files that have been transferred
successfully, i.e. file entries in the import catalogue are removed. The tool deletes all temporary files
(files with the extensions .req and .transferred in the GDMP directory var) and recovers from crashes
taking place during the remote staging of files. Note that this command is also called automatically after
gdmp replicate get has succeeded transferring files. Refer to Section 6.7 for further information on status
information about the file transfer.

Usage: gdmp_catalog_cleanup :

[-t <file|objectivity|all>] filetype, default value is ’all’

[-h] help message

33

The option -t is only available if the GDMP version for is compiled with the Objectivity option or the
RPMs gdmp-objy are used.

For further details on the use of a Mass Storage System with GDMP refer to Section 9.

7.2 gdmp get catalogue

In case of a network or server failure, a certain host may not be notified when an update is done. A
site which is down for some time is responsible for getting the latest information from other sites. This
program contacts a certain host, gets the remote file catalogue and creates the corresponding import
catalogue locally. A filter parameter can be applied optionally to filter the import catalogue.

Usage: gdmp_get_catalogue :

-r <remotehost> Remote host name

-p <remoteport> Remote port number

[-t <file|objectivity>] file type, default value is ’file’

[-f <filter> [-N]] Only add those files to local import catalogue

which have/don’t(if -N used) have <filter> in their path.

[-S <server_name>] Server name. Default is read from gdmp.shared.conf file

[-P <server_port>] Server port number. Default is read from gdmp.shared.conf file

[-V <virtual_org>] Virtual Organization

[-L <logfile_id>] GDMP server will log information in ${GDMP_TMP_DIR}/<logfile_id>

[-O] Don’t save server output in log file ${GDMP_VAR_DIR}/gdmp_server_log.out

[-D] Don’t delete the temp server log file

[-h] Help message

The host name has to be the name of a host which appears in the host list. The information about
the remote port and directories which are necessary to get the catalogue is taken from the host list in
etc/host list. The local site should already have a local file catalogue although it is permitted to be
empty.

GDMP creates two different catalogues for files and Objectivity files, respectively. The option -t is
used to specify which kind of catalogue is required. The option -t is only available if the GDMP version
for is compiled with the Objectivity option or the RPMs gdmp-objy are used.

By default, all files are included into the import catalogue but one can filter several files by using the
option -f. <filter> contains a string of the file path that will be filtered out. If a positive filter is applied,
all files that satisfy the filter criterion will be transferred. A negative filter means that files are sieved out
and are not included into the import catalogue. The default filter option is “positive filter”.

The options -S, -P and -V are explained in detail in Section 6.2.
The options -L, -O and -D are described in Section 6.12.

Example

Get the file catalogue from testbed008.cern.ch:

[hst@tbed0079] gdmp_get_catalogue -r testbed008.cern.ch -p3334

Remote catalog file is successfully added. [Sat Mar 16 17:58:34 2002]

7.3 gdmp host subscribe

A host can subscribe to any other host (GDMP server) in the Grid in order to be notified when new files
are published at the remote host with gdmp publish catalogue. See Section 6.5 for further details on
subscription.

34

Usage: gdmp_host_subscribe :

-r <remotehost> Remote host name

-p <remoteport> Remote port number

[-c] Check if local host is already subscribed to the remote host

[-u] Unsubscribe the loal host from remote GDMP server

[-S <server_name>] Server name. Default is read from gdmp.shared.conf file

[-P <server_port>] Server port number. Default is read from gdmp.shared.conf file

[-V <virtual_org>] Virtual Organization

[-L <logfile_id>] GDMP server will log information in ${GDMP_TMP_DIR}/<logfile_id>

[-O] Don’t save server output in log file ${GDMP_VAR_DIR}/gdmp_server_log.out

[-D] Don’t delete the temp server log file

[-h] Help message

The information about the local host is retrieved from the GDMP configuration file (gdmp.conf) and
is sent to the specified remote host.

The option -c can be used in order to check if the local host is already subscribed to a particular remote
host given by -r and -p. One can unsubscribe the local host from a remote with the option -u. The file
GDMP INSTALL DIR/etc/host subscribed contains all hosts to which the local host is subscribed.

The options -S, -P and -V are explained in detail in Section 6.2.
The options -L, -O and -D are described in Section 6.12.

Examples

Subscribe to remote host tbed0079.cern.ch on 3334:

[hst@testbed008] gdmp_host_subscribe -r tbed0079.cern.ch -p 3334

Message: Local host subscribed to tbed0079.cern.ch:3334

[Sat Mar 16 14:14:59 2002]

One can then check the file host subscribed to see to which hosts the local host has subscribed:

[hst@tbed008] less etc/host_subscribed

tbed0079.cern.ch:3334

Check the subscription to the remote host tbed0079.cern.ch :

[hst@testbed008] gdmp_host_subscribe -r tbed0079.cern.ch -p 3334 -c

Message: Local host is already subscribed to tbed0079.cern.ch:3334

[Sat Mar 16 14:16:56 2002]

Unsubscribe the local host testbed008.cern.ch from the remote host tbed0079.cern.ch:

[hst@testbed008] gdmp_host_subscribe -r tbed0079.cern.ch -p 3334 -u

Message: Local host has been unsubscribed from tbed0079.cern.ch:3334

[Sat Mar 16 14:18:09 2002]

7.4 gdmp job status

A client can get the GDMP server output written into a log file (similar to globus-job-status).
gdmp job status can also be used to display the contents of catalogues and files in GDMP INSTALL DIR/etc,

GDMP INSTALL DIR/var and partly of GDMP INSTALL DIR/tmp from a remote site that might not
have access to the catalogue files stored on the host where the GDMP server is running. See Examples
below.

35

Usage: gdmp_job_status :

(-L <logfile_id>|-c <catalogue_name>)

[-r <remotehost>] Remote host name. Default is local host

[-p <remoteport>] Remote port number. Default is local port

[-D] Delete the server temp log file ${GDMP_TMP_DIR}/<logfile_id>

[-a] Show name of all jobs

If -D is used, log files for all jobs will be deleted

and saved in ${GDMP_VAR_DIR}/gdmp_server_log.out

If -L <logfile_id> is also provided, only show/delete log files

which have <logfile_id> in their name

[-S <server_name>] Server name. Default is read from gdmp.shared.conf file

[-P <server_port>] Server port number. Default is read from gdmp.shared.conf file

[-V <virtual_org>] Virtual Organization

[-h] Help message

The option -L can be used to see the GDMP server log out. <logfile id> is the file ID returned
by GDMP clients like gdmp publish catalogue, gdmp ping, gdmp replicate get etc. Once you are done
with the logfile, you can delete it by using the option -D. Note that all file ID are stored in the directory
GDMP TMP DIR (see gdmp.conf) at the GDMP server.

The option -c can be use to read the contents of files that are managed by the GDMP server and thus
would normally only be accessible for users with local accounts on the host where the GDMP server is
install. This option allows to read the following file contents from remote sites. For instance, when the
GDMP Client Installation is used. <catalog name> can have the following values:
gdmp.conf
export catalogue
host list
host subscribed
import catalogue
local file catalogue

The server keeps track of some of the ongoing jobs and one can get all the replication jobs currently
active with the option -a.

The options -S, -P and -V are explained in detail in Section 6.2.

Examples

Get all jobs that the server has logged:

[hst@testbed008] gdmp_job_status -a

gdmp_testbed008.cern.ch_24509_1016298553_1

gdmp_testbed008.cern.ch_24564_1016298560_1

Delete a job:

[hst@testbed008] gdmp_job_status -L gdmp_testbed008.cern.ch_15329_1016277786_1 -D

Server Message [testbed008.cern.ch:3334]: Out of 1 log file(s) 1 is/are deleted.

Server Message [testbed008.cern.ch:3334]: Deleted job(s) name(s) is/are

"gdmp_testbed008.cern.ch_15329_1016277786_1" [Sat Mar 16 18:03:13 2002]

Display the contents of the local file catalogue:

36

[hst@testbed008] gdmp_job_status -c local_file_catalogue

file:testbed008.cern.ch_.home.hst.gdmp-3_.0-15march2002.testfiles.file1-gdmp3_.0:\

file1-gdmp3.0:9:3498111001:1016273020

file:testbed008.cern.ch_.home.hst.gdmp-3_.0-15march2002.testfiles.file2-gdmp3_.0:\

file2-gdmp3.0:9:3498111001:1016286820

file:testbed008.cern.ch_.home.hst.gdmp-3_.0-15march2002.testfiles.file3-gdmp3_.0:\

file3-gdmp3.0:9:3498111001:1016287291

The GDMP Client Installation is configured on the Worker Node lxshare0224 and we want to read the
contents of the file local file catalogue of the GDMP server on testbed008:

[hst@lxshare0224] gdmp_job_status -S testbed008.cern.ch -P 3336 -c local_file_catalogue

file:testbed008.cern.ch_.home.testfiles.cms.cmsfile1_.test:cmsfile1.test:26:4099148029:1017142140

file:testbed008.cern.ch_.home.testfiles.cms.cmsfile2_.test:cmsfile2.test:26:4099148029:1017142150

7.5 gdmp ping

This tool checks if the GDMP server is running on a particular host and port and accepting clients. The
remote/local server acknowledges this request with a message. By default, the programs tries to contact
the GDMP server on the local host, i.e. on the host where the client command is executed. The host
and port information are read from the gdmp.conf file. If the server is listening correctly and the user is
authorised, the server responds with a corresponding message (see below).

Usage: gdmp_ping :

[-r <remotehost>] Remote host name. Default is local host

[-p <remoteport>] Remote port number. Default is local port

[-t <timeout>] Timeout value in seconds

[-a] Check if remote/local server is up(no authentication check)

[-S <server_name>] Server name. Default is read from gdmp.shared.conf file

[-P <server_port>] Server port number. Default is read from gdmp.shared.conf file

[-V <virtual_org>] Virtual Organization

[-L <logfile_id>] GDMP server will log information in ${GDMP_TMP_DIR}/<logfile_id>

[-O] Don’t save server output in log file ${GDMP_VAR_DIR}/gdmp_server_log.out

[-D] Don’t delete the temp server log file

[-h] Help message

Remote servers can be contacted with the options -r on the remote port given by -p. The client
uses a timeout value of n seconds (default is 10 seconds but can be changed with the timeout option -t).
Within these n seconds, the server has to send an acknowledgement. If the server does not respond, the
client terminates the connection to the server and assumes that the server is currently not ready to accept
messages from the client. Thus, this tool should be called before a file transfer is started in order to ensure
that the remote site is responding correctly.

By default, gdmp ping checks if a user is authorised to contact a GDMP server. However, in order just
to check if a server is running, one can use the option -a to use a non-authorised ping. In this case, the
user does not have to be registered in the server’s grid-mapfile.

The options -S, -P and -V are explained in detail in Section 6.2.
The options -L, -O and -D are described in Section 6.12.

37

Examples

Test the local server on the local port:

[hst@testbed008] gdmp_ping

Message: The local GDMP server testbed008.cern.ch:3334 is listening

and you are an authorized user [Sat Mar 16 12:32:22 2002]

Test a remote server without authorisation:

[hst@testbed008] gdmp_ping -r tbed0079.cern.ch -p 3334 -a

Message: The remote GDMP server tbed0079.cern.ch:3334

is listening [Sat Mar 16 12:34:43 2002]

7.6 gdmp publish catalogue

This tool must be used after gdmp register local file. It creates the export catalogue locally (based
on the content of the local file catalogue), sends a copy to the subscribed hosts and registers complete
replica information (LFN, PFN, size, time stamp, CRC checksum, file type) into the Replica Catalogue.
Consequently, the Replica Catalogue is updated by default.

Usage: gdmp_publish_catalogue :

[-t <file|objectivity>] file type, default value is ’file’

[-n] Do not update the Replica Catalogue

[-C] Use manager and password from configuration file

while accessing Replica Catalogue

[-f <filter> [-N]] Only publish those new files to remote hosts

which have/don’t(if -N used) have <filter> in their path.

It will only filter the newly added files and then publish.

[-S <server_name>] Server name. Default is read from gdmp.shared.conf file

[-P <server_port>] Server port number. Default is read from gdmp.shared.conf file

[-V <virtual_org>] Virtual Organization

[-L <logfile_id>] GDMP server will log information in ${GDMP_TMP_DIR}/<logfile_id>

[-O] Don’t save server output in log file ${GDMP_VAR_DIR}/gdmp_server_log.out

[-D] Don’t delete the temp server log file

[-h] Help message

When publishing files, either files (arbitrary file format) or Objectivity files can be published by using
the option -t. The option -t is only available if the GDMP version is compiled with the Objectivity option
or the RPMs gdmp-objy are used.

If the option -n is used, replica information is not entered into the replica catalogue.
By default, GDMP tries to use GSI for accessing the Globus Replica Catalogue. If the option -C is

used, GDMP reads the pass word from the file gdmp.private.conf where it is stored in clear text. See
Section 5.3.1 for details on Globus Replica Catalogue Security issues.

By default, all new files from the local file catalogue are published but one can filter several files by
using the option -f. <filter> contains a string of the file path that will be filtered out. If a positive filter
is applied, all files that satisfy the filter criterion will be transferred. A negative filter means that files are
sieved out and will not be published. The default filter option is “positive filter”.

The options -S, -P and -V are explained in detail in Section 6.2.
The options -L, -O and -D are described in Section 6.12.

38

Examples

We assume that a remote host (tbed0079.cern.ch) has subscribed to the local host (testbed008.cern.ch).
The catalogue is published without updating the Replica Catalogue:

[hst@testbed008] gdmp_publish_catalogue -n

Message: Server Message [testbed008.cern.ch:3334]:

Out of 1 host(s) 1 have received the published catalog [Sat Mar 16 15:33:26 2002]

The newly published files then appear in the export catalogue:

[hst@testbed008] less etc/export_catalogue

file:testbed008.cern.ch_.home.hst.gdmp-3_.0-15march2002.testfiles.file1-gdmp3_.0:file1-gdmp3.0

file:testbed008.cern.ch_.home.hst.gdmp-3_.0-15march2002.testfiles.file2-gdmp3_.0:file2-gdmp3.0

file:testbed008.cern.ch_.home.hst.gdmp-3_.0-15march2002.testfiles.file3-gdmp3_.0:file3-gdmp3.0

From a remote client that does not have access to the directory where the GDMP server is running,
the contents of the export catalogue can be obtained via gdmp job status -c export catalogue. See Section
7.4.

Note: if you do not have the GSI enabled globus replica catalog libraries installed, you need to use
the option -C to get the pass word from gdmp.conf and we do that for the VO alice.

[hst@tbed0079] gdmp_publish_catalogue -V alice -C

If you do not use the option -C in the case above, you might see the following error at the server side:

[hst@tbed0079] var/alice/gdmp_server_log.out

Message: Opening logical collection... [Tue Apr 2 14:08:44 2002]

Message: Adding collection attributes [Tue Apr 2 14:08:44 2002]

RepCatalogue Error: Adding files to collection Insufficient access [globus_replica_catalog, globus_replica_catalog.c, 916]

[Tue Apr 2 14:08:44 2002]

“Insufficient access” means that the pass word for the LDAP server is not correctly supplied.

Important Note: Creation of First Entries in the Replica Catalogue for a given Storage
Element

This note is interesting for site admins, too.
Note that when you set up the Replica Catalogue the first time for a given Storage Element, the Replica

Catalogue needs to have the correct LDAP objects. In particular, the object “path” needs to correspond
to the GDMP STORAGE DIR of the given VO. See the following details.

Assume, that for the VO alice we have the GDMP STORAGE DIR is /home/files/alice and thus the
Replica Catalogue needs to have the following LDAP entries for a given collection “Alice Files”:

dn: re=tbed0079.cern.ch, lc=Alice Files, rc=TESTRC, dc=testbed008, dc=cern, dc=ch

objectclass: top

objectclass: GlobusTop

objectclass: GlobusReplicaInfo

uc: tbed0079.cern.ch

path: /home/files/alice

39

You do not need to understand the details but keep in mind that GDMP creates the variable “path”
automatically the first time a file is inserted for the given Storage Element tbed0079.cern.ch. Thus, you
need to make sure that you publish (gdmp publish catalogue) a file that contains exactly the file path
“/home/files/alice” and no additional subdirectory! In the worse case, just create a file /home/files/alice/dummy,
register it and publish the catalogue. Once this is done, you can also create sub directories in your
GDMP STORAGE DIR and publish files that are in the subdirectory.

The catalogue output can then look like follows:

dn: re=tbed0079.cern.ch, lc=Alice Files, rc=TESTRC, dc=testbed008, dc=cern, dc=ch

objectclass: top

objectclass: GlobusTop

objectclass: GlobusReplicaInfo

uc: tbed0079.cern.ch

path: /home/files/alice

filename: dummy

filename: alice-subdir1/alicefile1.test

filename: alice-subdir1/alicefile2.test

filename: alice-subdir2/alicefile1.test

7.7 gdmp register local file

GDMP keeps a local file catalogue for all files that it manages. Thus, every file that needs to be published
and later replicated has to be registered in the local file catalogue (GDMP INSTALL DIR/etc/local file catalogue)
by means of this command. Note that registering in the local file does not imply that the file is registered
in the replica catalogue!

Note that normally files need to be located on the SE and can only be registered when they are available
in the SE storage space, i.e. under the GDMP STORAGE DIR directory!

The tool stores the logical file ID, physical filenames, the size, the modification time, the CRC checksum,
and the file type in the local file file catalogue.

Usage: gdmp_register_local_file :

(-p <pfn>|-d <directory>) Register a single file with -p

Register all files in a directory with -d

[-t <file|objectivity>] specify the file type, default value is ’file’

[-R] Register a file which is local to GDMP server.

[-S <server_name>] Server name. Default is read from gdmp.shared.conf file

[-P <server_port>] Server port number. Default is read from gdmp.shared.conf file

[-V <virtual_org>] Virtual Organization

[-L <logfile_id>] GDMP server will log information in ${GDMP_TMP_DIR}/<logfile_id>

[-O] Don’t save server output in log file ${GDMP_VAR_DIR}/gdmp_server_log.out

[-D] Don’t delete the temp server log file

[-h] Help message

One can register a single file (-p) with its entire physical filename (PFN) or all files of a directory (-d).
In both cases, the file IDs are assigned automatically based on the PFN and the storage directory. Based
on the file type (file or Objectivity files), additional information will be stored in the local catalogue.

The option -t is only available if the GDMP version for is compiled with the Objectivity option or the
RPMs gdmp-objy are used.

40

By default, gdmp register local file tries to register a file in the same filesystem, where the client
command is executed. If the client command is executed on one host and the server running on another
host where also the files to be registered are stored, one can register file at the server side with the option
-R.

The options -S, -P and -V are explained in detail in Section 6.2.
The options -L, -O and -D are described in Section 6.12.
Once the file is registered in the catalogue, it can possibly be staged to a mass storage system be-

fore gdmp publish catalogue is called. Information in the local file catalogue will be stored in the
replica catalogue and then made available to the Grid. Note that this tool has to be used before
gdmp publish catalogue is initiated!

Examples

Register all files in the directory /home/hst/gdmp-3.0-15march2002/testfiles. In our examples, two files
(file1-gdmp3.0 and file2-gdmp3.0) will be registered:

[hst@testbed008] gdmp_register_local_file -d /home/hst/gdmp-3.0-15march2002/testfiles

Message: Obtaining file attribs e.g size, timestamp, checksum etc for /home/hst/gdmp-3.0-1

Message: File attribs for /home/hst/gdmp-3.0-15march2002/testfiles/file1-gdmp3.0 obtained.

Message: Obtaining file attribs e.g size, timestamp, checksum etc for /home/hst/gdmp-3.0-1

Message: File attribs for /home/hst/gdmp-3.0-15march2002/testfiles/file2-gdmp3.0 obtained.

Message: Registering file:testbed008.cern.ch_.home.hst.gdmp-3_.0-15march2002.testfiles.\

file1-gdmp3_.0:file1-gdmp3.0:9:3498111001:1016273020 [Sat Mar 16 14:56:11 2002]

Message: Registered file:testbed008.cern.ch_.home.hst.gdmp-3_.0-15march2002.testfiles.file1

Message: Registering file:testbed008.cern.ch_.home.hst.gdmp-3_.0-15march2002.testfiles.file

Message: Registered file:testbed008.cern.ch_.home.hst.gdmp-3_.0-15march2002.testfiles.file2

Message: Out of 2 file(s) 2 are registered. [Sat Mar 16 14:56:11 2002]

The two files then appear in the local file catalogue:

[hst@testbed008] less etc/local_file_catalogue

file:testbed008.cern.ch_.home.hst.gdmp-3_.0-15march2002.testfiles. \

file1-gdmp3_.0:file1-gdmp3.0:9:3498111001:1016273020

file:testbed008.cern.ch_.home.hst.gdmp-3_.0-15march2002.testfiles. \

file2-gdmp3_.0:file2-gdmp3.0:9:3498111001:1016286820

From a remote client that does not have access to the directory where the GDMP server is running, the
contents of the local file catalogue can be obtained via gdmp job status -c local file catalogue. See Section
7.4.

Registering a single file with option -p:

[hst@testbed008] gdmp_register_local_file -p \

/home/hst/gdmp-3.0-15march2002/testfiles/file3-gdmp3.0

[...]

Message: Out of 1 file(s) 1 are registered. [Sat Mar 16 15:02:26 2002]

We now show an example where the GDMP Client Installation is used on a Worker Node (lxshare0224.cern.ch)
and the file is registered at the server side (note the option -R which means that the directory needs to be
reachable from the GDMP server).

41

[hst@lxshare0224] gdmp_register_local_file -S testbed008.cern.ch \

-P 3336 -d /home/hst/gdmp-3.0-25march2002/testfiles -R

Server Message [testbed008.cern.ch:3336]: A client has been started to

register the requested files. [Wed Mar 27 22:04:10 2002]

Message: Server Log ID=gdmp_testbed008.cern.ch_28929_1017263049_1 [Wed Mar 27 22:04:10 2002]

The following example is executed from a Worker Node (lxshare0224.cern.ch) and we show how we can
use gdmp job status to check for possible errors:

[hst@lxshare0224] gdmp_register_local_file -S testbed008.cern.ch -P 3336 -R -d /hallo

Server Message [testbed008.cern.ch:3336]: A client has been started to register the requested

Message: Server Log ID=gdmp_testbed008.cern.ch_1033_1017311964_1 [Thu Mar 28 11:39:24 2002]

Now we check the status:

[hst@lxshare0224] gdmp_register_local_file -S testbed008.cern.ch -P 3336 -R -d /hallo

Server Message [testbed008.cern.ch:3336]: A client has been started to register the requested

Message: Server Log ID=gdmp_testbed008.cern.ch_1033_1017311964_1 [Thu Mar 28 11:39:24 2002]

[...]

===>END LOGGING OUTPUT FOR PROCESS=gdmp_testbed008.cern.ch_1033_1017311964_1

Error: /hallo either does not exist/accessable or not a valid directory

No Files in the directory /hallo to register [Thu Mar 28 11:39:24 2002]

===>END LOGGING OUTPUT FOR

PROCESS=gdmp_testbed008.cern.ch_1033_1017311964_1

We see that there was an error at the server side: the directory /hallo does not exist and is not a part
of GDMP STORAGE DIR.

7.8 gdmp remove local file

Remove a file from disk and from all possible file catalogues: export catalogue, local file catalogue and
optionally from the Replica Catalogue.

Usage: gdmp_remove_local_file :

-p <pfn> Entire physical file path on disk

[-t <file|objectivity>] specify the file type, default value is ’file’

[-n] Do not update the Replica Catalogue

[-C] Use manager and password from configuration file

while accessing Replica Catalogue

[-S <server_name>] Server name. Default is read from gdmp.shared.conf file

[-P <server_port>] Server port number. Default is read from gdmp.shared.conf file

[-V <virtual_org>] Virtual Organization

[-L <logfile_id>] GDMP server will log information in ${GDMP_TMP_DIR}/<logfile_id>

[-O] Don’t save server output in log file ${GDMP_VAR_DIR}/gdmp_server_log.out

[-D] Don’t delete the temp server log file

[-h] Help message

The option -t is only available if the GDMP version is compiled with the Objectivity option or the
RPMs gdmp-objy are used.

42

If the option -n is used, replica information is not deleted from the replica catalogue.
By default, GDMP tries to use GSI for accessing the Globus Replica Catalogue. If the option -C is

used, GDMP reads the pass word from the file gdmp.private.conf where it is stored in clear text. See
Section 5.3.1 for details on Globus Replica Catalogue Security issues.

The options -S, -P and -V are explained in detail in Section 6.2.
The options -L, -O and -D are described in Section 6.12.

Examples

Delete a single file from the local host but keep the entry in the Replica Catalogue:

[hst@testbed008] gdmp_remove_local_file -p \

/home/hst/gdmp-3.0-15march2002/testfiles/file1-gdmp3.0 -n

Message: Deleting /home/hst/gdmp-3.0-15march2002/testfiles/file1-gdmp3.0 of type file [

Message: /home/hst/gdmp-3.0-15march2002/testfiles/file1-gdmp3.0 deleted. [Sat Mar 16 18

7.9 gdmp replicate get

This is the main executable to transfer files from a remote machine to the local host. The users should
make sure that they do not have an older file in the same directory and with the same name where the
new file will be transferred to.

It is possible to start multiple gdmp replicate get clients on the same import catalogue. The system
itself takes care of concurrency issues and whether a file is already being transferred by some other client
or not. This functionality provides users with an easy way to do parallel transfers and improve the network
throughput obtained.

[-i <fileid>] FileID of the file (see import_catalogue)

This option is only required for transferring single files

[-r <remotehost>] Remote host name. Default is local host

[-p <remoteport>] Remote port number. Default is local port

[-t <file|objectivity>] filetype, default value is ’file’

[-d] attach dummy DB instead of original(for Objectivity files only)

[-n] Do not update the Replica Catalogue

[-C] Use manager and password from configuration file

while accessing Replica Catalogue

[-f <filter> [-N]] Replicate only files from local import catalogue

which have/don’t(if -N used) have <filter> in their path.

[-S <server_name>] Server name. Default is read from gdmp.shared.conf file

[-P <server_port>] Server port number. Default is read from gdmp.shared.conf file

[-V <virtual_org>] Virtual Organization

[-L <logfile_id>] GDMP server will log information in ${GDMP_TMP_DIR}/<logfile_id>

[-O] Don’t save server output in log file ${GDMP_VAR_DIR}/gdmp_server_log.out

[-D] Don’t delete the temp server log file

[-h] Help message

The default assumption is that files are taken from the import catalogue and transferred to the client
machine. This allows a set of files rather than a single file to be replicated. However, if the file ID of the
file at the source site is known, the options -i can be used to replicate single files. The file ID can be
obtained from the import catalogue (see Section 6.3).

43

The options -r and -p are only used if one wants to select a certain host/port from where files have
to be transferred. If one uses these options, gdmp relicate get will only transfer files which exist on that
host/port. GDMP will not replicate files from any other host except the one specified with the option. By
default, GDMP just transfers all files from all hosts that appear in the import catalogue .

The option -t is only available if the GDMP version is compiled with the Objectivity option or the
RPMs gdmp-objy are used. If the file type “objectivity” is chosen, replicated files are attached to a local
federation. Since for large files the attach process can be time consuming, the option -d does a “dummy
attach” (a simple trick where a different file is attached where Objectivity does not check for associations)
that speeds up the attachment process.

By default, when a file is replicated successfully to a local site, the file is validated and then registered
in the replica catalogue. In particular, the logical and physical filenames as well as size, modification time,
CRC checksum and file type are registered in the replica catalogue. However, a site may request not to
insert a file into the replica catalogue by using the option -n.

By default, GDMP tries to use GSI for accessing the Globus Replica Catalogue. If the option -C is
used, GDMP reads the pass word from the file gdmp.private.conf where it is stored in clear text. See
Section 5.3.1 for details on Globus Replica Catalogue Security issues.

By default, all files from the import catalogue are transferred but one can filter several files by using
the option -f. <filter> contains a string of the file path that will be filtered out. If a positive filter is
applied, all files that satisfy the filter criterion will be transferred. A negative filter means that files are
sieved out and shall not be transferred. The default filter option is “positive filter”.

The options -S, -P and -V are explained in detail in Section 6.2.
The options -L, -O and -D are described in Section 6.12.
Note that the data production site can store files in several directories. When these files are trans-

ferred to the local site, these directories are also created in the local storage root directory specified by
GDMP STORAGE DIR or GDMP OBJY STORAGE DIR.

Some internal details

Before gdmp replicate get starts a data transfer, it checks if the size of the requested file on disk cor-
responds to the file size in the remote local file catalogue. Only if the file sizes correspond, the file gets
replicated. Thus, GDMP makes sure that the requested file is fully available at the remote site and not
parts of the file only.

The tool also takes care of some error recovery before it starts to transfer files. It checks the status of
transferred files and if it finds some .not registered, .not notified, .not replicated or .not validated,
it will start the transfer process from this point again. For instance, if .not replicated exists, it will start
transferring it again. Furthermore, if .not validated exists, this means that the file was not correctly
transferred last time and it will start the transfer again.

Examples

By default, gdmp replica get tries to get (transfer) all files that appear in the import catalogue. For
instance, the import catalogue contains the following files which need to be transferred from the remote
host to the local host:

[hst@tbed0079] less etc/import_catalogue

file:testbed008.cern.ch_.home.hst.gdmp-3_.0-15march2002.testfiles.file1-gdmp3_.0:file1-gdmp3.0:/home/hst/gdmp-3.0-15march2002/testfiles:testbed008.cern.ch:3334:1

file:testbed008.cern.ch_.home.hst.gdmp-3_.0-15march2002.testfiles.file2-gdmp3_.0:file2-gdmp3.0:/home/hst/gdmp-3.0-15march2002/testfiles:testbed008.cern.ch:3334:1

file:testbed008.cern.ch_.home.hst.gdmp-3_.0-15march2002.testfiles.file3-gdmp3_.0:file3-gdmp3.0:/home/hst/gdmp-3.0-15march2002/testfiles:testbed008.cern.ch:3334:1

44

From a remote client that does not have access to the directory where the GDMP server is running,
the contents of the export catalogue can be obtained via gdmp job status -c import catalogue. See Section
7.4.

Now we start the data transfer without registering the files in the Replica Catalgue:

[hst@tbed0079 gdmp-install] gdmp_replicate_get -n

Server Message [tbed0079.cern.ch:3334]: A client has been started to

replicate the requested files. [Sat Mar 16 15:47:37 2002]

Message: Server Log ID=gdmp_tbed0079.cern.ch_14875_1016290057_1 [Sat Mar 16 15:47:37 2002]

The client delegates the replication process to the server that starts to transfer the requested files and
logs the process in a log file. In the above example, the log file ID is gdmp tbed0079.cern.ch 14875 1016290057 1
and the command gdmp job status can be used in order to display the server log file:

[hst@tbed0079] gdmp_job_status -L gdmp_tbed0079.cern.ch_14875_1016290057_1

===>START LOGGING OUTPUT FOR PROCESS=gdmp_tbed0079.cern.ch_14875_1016290057_1

Server Message: a new client has connected [Sat Mar 16 15:47:37 2002]

Message Received=tbed0079.cern.ch\:3334:tbed0079.cern.ch_14842_1016290057_4\:servicename\:

Message Send=tbed0079.cern.ch_14842_1016290057_4:ack:0::host@tbed0079.cern.ch [Sat Mar 16

Message Received=tbed0079.cern.ch\:3334:tbed0079.cern.ch_14842_1016290057_8\:authenticate

[...]

In the following example we only want to replicate files that exist on host shahzad.fnal.gov. GDMP
will try to transfer all files which were published from shahzad.fnal.gov:2000 only and will not replicate
files of any other remote host:

[hst@testbed008] gdmp_replicate_get -r shahzad.fnal.gov -p 2000

In the following examples we apply a filter and what to get only files that are stored in the directory
“directory1”. This is indicated with the filter criterion. Note that the directory needs to exist at the
remote site !

[hst@testbed008] gdmp_replicate_get -f directory1 -P

gdmp replicate get first creates the directory and second transfers all the files into the new directory.

[hst@testbed008 testfiles] ls -lR

./directory1:

total 8

-rwxr-xr-x 1 hst users 10 Mar 26 08:36 dir1file1

-rwxr-xr-x 1 hst users 10 Mar 26 08:36 dir2file1

Replicate a file from a Computing Element (in particular a WorkerNode):

[hst@lxshare0224] gdmp_replicate_get -S testbed008.cern.ch -P 3336 -n

Server Message [testbed008.cern.ch:3336]: A client has been started to replicate the requ

Message: Server Log ID=gdmp_testbed008.cern.ch_29085_1017263433_1 [Wed Mar 27 22:10:33 2

45

In the following example we show how a filter can be applied and the command is executed from a
Worker Node on lxshare0224 using the GDMP Client Installation. The filter is applied to replicate all files
in the directory named “directory1”:

[hst@lxshare0224] gdmp_replicate_get -S testbed008.cern.ch -P 3336 -n -f directory1

Server Message [testbed008.cern.ch:3336]: A client has been started to replicate the requested files. [Thu Mar 28 11:36:24 2002]

Message: Server Log ID=gdmp_testbed008.cern.ch_1007_1017311784_1 [Thu

Mar 28 11:36:24 2002]

7.10 gdmp replicate put

gdmp replicate put has the opposite functionality of gdmp replicate get and internally even uses this com-
mand. One cannot put arbitrary files to a remote site but only the ones the appear in the remote
import catalogue (!) of the host where one wants to put files. It is required that the user issuing
this command is also registered at the remote server. This would anyway be the case if the GDMP Client
Installation is used locally but for the full installation, special care needs to be taken. In particular, when
users issues the GDMP commands directly on the Storage Element.

All the “normal” functionalities of GDMP also works with it, i.e if file is not on disk, it will be staged.

Usage: gdmp_replicate_put :

[-i <fileid>] FileID of the file (see import_catalogue)

This option is only required for transferring single files

[-r <remotehost>] Remote host name where you want to put the file. Default is local host

[-p <remoteport>] Remote port number where you want to put the

file. Default is local port

[-t <file|objectivity>] filetype, default value is ’file’

[-d] attach dummy DB instead of original(for Objectivity files only)

[-n] Do not update the Replica Catalogue

[-C] Use manager and password from configuration file

while accessing Replica Catalogue

[-f <filter> [-N]] Replicate only files from local import catalogue

which have/don’t(if -N used) have <filter> in their path.

[-S <server_name>] Server name. Default is read from gdmp.shared.conf file

[-P <server_port>] Server port number. Default is read from gdmp.shared.conf file

[-V <virtual_org>] Virtual Organization

[-L <logfile_id>] GDMP server will log information in ${GDMP_TMP_DIR}/<logfile_id>

[-O] Don’t save server output in log file ${GDMP_VAR_DIR}/gdmp_server_log.out

[-D] Don’t delete the temp server log file

[-h] Help message

The options -p and -r are equivalent (reverse) to the options of gdmp replicate get.
The option -t is only available if the GDMP version is compiled with the Objectivity option or the

RPMs gdmp-objy are used. If the file type “objectivity” is chosen, replicated files are attached to a local
federation. Since for large files the attach process can be time consuming, the option -d does a “dummy
attach” (a simple trick where a different file is attached where Objectivity does not check for associations)
that speeds up the attachment process.

By default, all files from the remote import catalogue are transferred but one can filter several files by
using the option -f. <filter> contains a string of the file path that will be filtered out. If a positive filter

46

is applied, all files that satisfy the filter criterion will be transferred. A negative filter means that files are
sieved out and do not want to be transferred. The default filter option is “positive filter”.

By default, GDMP tries to use GSI for accessing the Globus Replica Catalogue. If the option -C is
used, GDMP reads the pass word from the gdmp.private.conf file where it is stored in clear test. See
Section 5.3.1 for details on Globus Replica Catalogue Security issues.

The options -S, -P and -V are explained in detail in Section 6.2.
The options -L, -O and -D are described in Section 6.12.

Examples

A file has been creating on tbed0079 and then published to testbed008. Now, we start gdmp replicate put
on tbed0079 and replicate the file to testbed008.cern.ch.

1. We first check the remote import catalogue of testbed008.cern.ch. Note that we send gdmp job status
to testbed008.cern.ch!

[hst@tbed0079] gdmp_job_status -c import_catalogue -r testbed008.cern.ch -p3335

file:tbed0079.cern.ch_.home.hst.gdmp-3-0-20march2002.testfiles.fileA_.tbed0079:\

fileA.tbed0079:/home/hst/gdmp-3-0-20march2002/testfiles:tbed0079.cern.ch:3335:1

The file ID of the file to be replicated is:
tbed0079.cern.ch .home.hst.gdmp-3-0-20march2002.testfiles.fileA .tbed0079

2. Now run gdmp replicate put with the above file ID and state the remote host testbed008.cern.ch
since this is the host where we want to put the file:

[hst@tbed0079] gdmp_replicate_put -i \

tbed0079.cern.ch_.home.hst.gdmp-3-0-20march2002.testfiles.fileA_.tbed0079 \

-r testbed008.cern.ch -p 3335

Server Message [testbed008.cern.ch:3335]: A client has been started to replicate the req

Message: Server Log ID=gdmp_testbed008.cern.ch_28021_1016644398_1 [Wed Mar 20 18:13:18

3. The result of the data transfer can be checked with:

[hst@tbed0079] gdmp_job_status -L gdmp_testbed008.cern.ch_21_1016644398_1 \

-r testbed008.cern.ch -p3335

===>START LOGGING OUTPUT FOR PROCESS=gdmp_testbed008.cern.ch_28021_1016644398

Server Message: a new client has connected [Wed Mar 20 18:13:18 2002]

Message Received=tbed0079.cern.ch\:3335:tbed0079.cern.ch_20065_1016644398_4\:vicename\: [

[...]

Message: Total files requested for replicate=1 [Wed Mar 20 18:13:20 2002]

Message: Total files successfully replicated=1 [Wed Mar 20 18:13:20 2002]

Message: Total files requested for staging=0 [Wed Mar 20 18:13:20 2002]

Message: Total files passed pre-processing stage=0 [Wed Mar 20 18:13:20 2002

Message: Total files skipped due to other process=0 [Wed Mar 20 18:13:20 200

Message: Total files failed=0 [Wed Mar 20 18:13:20 2002]

Message: Running /home/hst/gdmp-3.0-20march2002/gdmp-install/bin/gdmp_catalogcleanup

Message: Cleaning Catalogue [Wed Mar 20 18:13:20 2002]

47

Working on

tbed0079.cern.ch_.home.hst.gdmp-3-0-20march2002.testfiles.fileA_.t0079

[Wed M

Message: 1 entire(s) removed for tbed0079.cern.ch_.home.hst.gdmp-3-0-arch2002.testfiles.

File Remved:/home/hst/gdmp-3.0-20march2002/gdmp-install/var//tbed0079rn.ch_.home.hst.gdm

===>END LOGGING OUTPUT FOR PROCESS=gdmp_testbed008.cern.ch_28021_1016644398_1

4. One can also check the remote local file catalogue on testbed008.cern.ch and it shows that the file
has been correctly registered at testbed008:

[hst@tbed0079] gdmp_job_status -c local_file_catalogue -r testbed008.cern.ch -p3335

file:tbed0079.cern.ch_.home.hst.gdmp-3-0-20march2002.testfiles.fileA_.tbed0079:fileA.tbed0079:939:1870463862:1016643578

7.11 gdmp server

A server has to be started on each site participating in the Data Grid. The server is responsible for
answering client messages, sending notification messages, and handling security issues. The server is
started by the Internet daemon (inetd) or as a stand-alone server (see Section 4.2.2 for details).

gdmp_server

The server does not accept any command line options since all server configuration is stored and
managed in the GDMP configuration files.

7.12 gdmp stage ccomplete

This command line tool is used only by the script GDMP STAGE FROM MSS in order to automatically
initiate a file transfer when a file has been staged from tape to disk. For further information refer to
Section 9.

Usage: gdmp_stage_complete :

-f filename

[-h] for help message

7.13 get progress report

The executable gdmp replicate get uses the .stat files in the GDMP directory var directory for each
file currently being transferred. These files contain progress information on the transfer and are updated
every few seconds. Once the file has been completely transferred, these .stat files are deleted and the
final transfer log goes in the file GDMP INSTALL DIR/var/replicate.log. If you want to find out the
state of advancement of all the transfers currently in progress, you can run this script, and it will produce
a file GDMP INSTALL DIR/var/progress.log which will contain the latest progress information.

A typical progress report (stored in the file progress.log) looks like follows:

filename - total size - bytes transferred - %age completed

/data/file1 - 100000 - 50000 - 50%

A typical entry in the file replicate.log looks like follows:

/data/file1 incoming from host: host1.cern.ch, bytes transferred 100000,

start: [Wed Oct 17 21:44:52 2001], end: [Wed Oct 17 21:47:12 2001]

48

It contains the file to be transferred (the local file path), the start time and the end time of the data
transfer for the specific file.

Note that this tool is only available in the full GDMP installation and can only be executed on the
machine where the GDMP server is installed.

7.14 gdmp version

This tool is location in the directory sbin and prints the version number of the current release.

7.15 create gridmapfile

The script is required in the EU DataGrid Testbed in order to automatically create the necessary entries
in the VO specific GDMP grid-mapfiles on the SE. It takes the following arguments:

create_gridmapfile <GDMP_INSTALL_DIR> <GDMP_USER> <GDMP_VO> [<MDS_HOST> <MDS_PORT>]

where MDS HOST and MDS PORT are optional. GDMP USER is the Unix user under which the GDMP server
is running and GDMP VO is the specific VO. Before invoking the script, the user needs to get a valid proxy
using the command grid-proxy-init. The script assumes that on the SEs in the EDG Testbed a gatekeeper
is running and the SE host certificates are user readable. If the MMDS HOST and MDS PORT are not specified,
the host testbed011.cern.ch on port 2170 is contacted.

The script contacts the MDS searching all SEs registered and copies the subject of the SE hosts
certificated into the gdmp VO specific grid-mapfile. This is done for the specific VO on the SE and
consequently the script needs to be called for each VO separately. Thus, the grid-mapfile will then have
entries like follows:

"/O=Grid/O=CERN/OU=cern.ch/CN=host/lxshare0219.cern.ch" gdmp

"/O=Grid/O=CERN/OU=cern.ch/CN=host/lxshare0222.cern.ch" gdmp

In addition, the script contacts the MDS in order to find out about all possible users and their VOs
and then enters the user subject names into the VO specific GDMP-grid-mapfiles.

In addition the scripts searches in the local grid-mapfiles for all users with a certificate mapped to the
specific local VO user. It then adds their certificate subjects to the VO specific GDMP grid-mapfile. For
instance, the CMS specific grid-mapfile in the /opt/edg/etc/cms/grid-mapfile can look like follows. Note
that no mapping to local users is required!

"/C=FR/O=CNRS/OU=LPNHE/CN=Firstname Lastname/Email=First.Last@poly.in2p3.fr"

"‘/C=IT/O=INFN/OU=Personal Certificate/L=Pisa/CN=First Name/Email=Firstname.Lastname@pi.infn.it"

7.16 Other tools in sbin

The GDMP directory sbin contains some shell utilities that GDMP uses internally. One of the internal
tools is the following:

gdmp server start: This script is called by the inetd to start the GDMP server. See Appendix A
Section 12 for installation details.

Further scripts like for staging and notification can be added here.

49

8 GDMP C++ API

For GDMP client commands, there exists a minimal GDMP C++ API for accessing GDMP servers re-
motely. The C++ GDMP API class can be found in the GDMP installation tree under
include/API/gdmp api.h.

8.1 Description of the Programming Interface

We point out the main features of the API but refer to the file gdmp api.h and the Section 7 for more
details on arguments. We state here the public methods of the GDMP API class:

The corresponding method for gdmp ping is:

GDMP_Result ping(const string &host = "",

unsigned int port = 0);

The following methods corresponds to gdmp register local file with option -S. In more detail
is dir = true corresponds to the option -d and is dir = false corresponds to the option -p.

GDMP_Result register_local_file(const string &path,

bool is_dir=false

#ifdef OBJECTIVITY

,const string &filetype = ""

#endif);

The method for gdmp publish catalogue looks like follows. For instructions on using filters see the
last paragraphs in this section.

GDMP_Result publish_catalogue(const string &filter = "",

bool update_rc=true,

bool gsi_auth=true

#ifdef OBJECTIVITY

,const string &filetype = ""

#endif);

The method for gdmp remove local file looks like follows:

GDMP_Result remove_local_file(const string &path,

bool update_rc=true,

bool gsi_auth=true

#ifdef OBJECTIVITY

,const string &filetype = ""

#endif);

The method for gdmp repliate get looks like follows. For instructions on using filters see the last
paragraphs in this section.

GDMP_Result replicate_get(const string &host = "",

unsigned int port = 0,

const string &filter = "",

const string &catalog_path = "",

50

const string &fileid = "",

bool update_rc=true,

bool gsi_auth=true

#ifdef OBJECTIVITY

,const string &filetype = ""

,bool dummy_attach_=false

#endif);

The method for gdmp repliate put looks like follows. For instructions on using filters see the last
paragraphs in this section.

GDMP_Result replicate_put(const string &host = "",

unsigned int port = 0,

const string &filter = "",

const string &catalog_path = "",

const string &fileid = "",

bool update_rc=true,bool gsi_auth=true

#ifdef OBJECTIVITY

,const string &filetype = ""

,bool dummy_attach_=false

#endif);

The following method corresponds to gdmp host subscribe without the option -c:

GDMP_Result host_subscribe(const string &host,

unsigned int port);

The following method corresponds to gdmp host subscribe with the option -u but without -c.

GDMP_Result host_unsubscribe(const string &host,

unsigned int port);

The following method corresponds to gdmp get catalogue. For instructions on using filters see the
last paragraphs in this section.

GDMP_Result get_catalogue(const string &host,

unsigned int port,

const string &filter = ""

#ifdef OBJECTIVITY

,const string &filetype = ""

#endif);

The following method can be used to handle/retrieve log on local server. Set to true if you want to
store server log in separate file. This also allows to retrieve it later with get log.

void set_separate_log(bool = true);

Set to true if one wants to store server side messages in log:

void set_use_log(bool = true);

51

Retrieve server side log (only if separate log is set):

GDMP_Result get_log(void);

Clean log on server side:

GDMP_Result remove_log(void);

Set a Virtual Organisation (VO):

void set_vo(const string &vo = "");

void set_local_vo(const string &vo);

Using Filters in the API

By default, if a filter is used with the variable filter in the API, a positive filter is used. In order to
distinguish between a positive and a negative filter, the sign + or - has to be used as the first character in
the filter string. In more detail, the strings "+<value>" or "<value>" will be treated as a positive filter
and "-<value>" will be treated as negative filter.

For example, if one wants to apply a negative filter where <value>=muon then he/she should pass
-muon to method in the filter argument. If <value>=+myfiles, the proper positive filter string should
be ++myfiles otherwise GDMP will assume that the first + is used to indicate that this is positive filter
and GDMP will only search for myfiles.

8.2 Usage Instructions

In the GDMP CVS repository

http://cdcvs.fnal.gov/cgi-bin/public-cvs/cvsweb-public.cgi/gdmp/test

you can find a test program api test.C and the corresponding makefile api test build for the client API.
In order to use the client API, you only need to include the header file gdmp api.h. You need to link
your program with libgdmp and libgdmp client libraries as well as libReplicaCatalogue and a few Globus
libraries as you can see in this example makefile:

GLOBUS_FLAVOR=gcc32dbg

g++ api_test.C -g -o api_test -I$GDMP_INSTALL_DIR/include/gdmp -I../API \

-L$GDMP_INSTALL_DIR/lib -L$GLOBUS_LOCATION/lib \

-lgdmp -lgdmp_client -lReplicaCatalog \

-lglobus_replica_catalog_${GLOBUS_FLAVOR} \

-lglobus_gass_copy_${GLOBUS_FLAVOR} \

-lglobus_nexus_${GLOBUS_FLAVOR} \

-lglobus_common_${GLOBUS_FLAVOR} \

-lpthread

If you are using shared libraries, you need to make sure that your LD LIBRARY PATH contains the location
of all the libraries above.

52

9 Support for a Mass Storage System

9.1 Motivation

GDMP supports a simple interface for a Mass Storage System (MSS). Since we assume that a site may run
out of disk space, this interface is responsible for staging files from disk to the MSS when the disk-pool is
full and staging them back to disk when requested.

9.2 Flow of Control

Let us assume a case where a file is in the local file catalogue but because of storage-space restrictions it
has been staged to the MSS. Now this file is requested by a remote site via gdmp replicate get, and the
file cannot be found in the directory GDMP STORAGE DIR (or GDMP OBJY STORAGE DIR
in case of Objectivity files). GDMP always looks into this directory first. If the file is not found there, the
remote client will send a request to stage the file. The local GDMP server will receive this request and
will start a staging script which is pointed to by GDMP STAGE FROM MSS. If the script is started
successfully, the local server will send a message back to the remote client saying that staging is now in
process. The remote client will disconnect and move on to the next files in its import catalogue. When
the file staging is complete, the script will call gdmp stage complete which will notify the remote server
that the file has been staged and is ready to transfer. The remote server will start a new client using
gdmp replicate get to transfer this file.

9.3 The Interface

The staging script itself is not provided by GDMP. We only provide a plug-in mechanism for staging
scripts (to and from the MSS) since different sites may have different Mass Storage Systems and thus
require specific procedures. The staging script should have the following command line interface:

GDMP_STAGE_FROM_MSS <relative_path_name> <root_directory_on_disk>

where relative path name is a file path on disk and root directory on disk is the storage root
directory on disk (either for files or Objectivity files).

For instance, a possible script could be invoked as follows:

GDMP_STAGE_FROM_MSS dir1/dir2/file1 /data/directory

where the second argument would be mapped to the following physical file path on disk:

/data/directory/dir1/dir2/file1

It is required that the MSS itself has it internal catalogue about all files listed. Thus, it needs to map
this file information here to its internal file location.

It is required that the staging process is atomic. GDMP partly takes care of this internally. GDMP
has an internal method that checks the remote file size on disk and compares it with the one registered in
the local file catalogue. Only if both file sizes are the same, GDMP starts the data transfer process. Thus,
GDMP never transfers files that are partially staged to disk.

When the staging is completed, the script is expected to call the tool gdmp stage complete which
would notify the client that the file is ready to be transferred.

The second staging script for transfers from disk to MSS should have the following interface:

GDMP_STAGE_TO_MSS <relative_path_name> <root_directory_on_disk>

The script should also have knowledge about the directory inside the MSS where the file should be
copied to.

53

9.4 Staging States

We define the following states for processing of files that reside on tape at the remote site. Let us con-
sider an example of a staging operation. A client requests the file filename1 from a remote site with
gdmp replicate get. Locally, this request is logged and the file filename1.stat is created in the GDMP
directory var. If the file is on the remote disk, the local client carries on with the transfer, and this
status file contains the progress of the transfer. However, if the file is not present on the remote disk,
the local client sends a request to stage the file at the remote end and produces a file filename1.req

in GDMP INSTALL DIR/var. The remote server calls the staging script. The script starts the exe-
cutable gdmp stage complete when the staging has completed. This notifies the server on the requesting
site that staging has been completed on the remote end. The server then starts the gdmp replicate get

which starts the file transfer of filename1 and creates the file filename1.stat indicating the transfer
status.

9.5 Interface to HRM

GDMP has a plug-in for the Hierarchical Storage Manager (HRM) [1] APIs, which provide a common
interface to be used to access different Mass Storage Systems. The implementation of HRM is based on
CORBA communication mechanisms. Some initial integration tests have been performed, with promising
results.

The C++ plug-in and the CORBA IDL exist in the source directories under: StagingPlugins and
HRMIDL. We do not provide a production version of this now and thus the code is not included into the
installation tree. For details on the IDL refer to:

http://cdcvs.fnal.gov/cgi-bin/public-cvs/cvsweb-public.cgi/ppdg_idl/

54

10 Replica Catalogue C++ API and Command Line Tools

10.1 Description of the Programming Interface

The Replica Catalogue API is a generic C++ API to the Globus replica catalogue. It implements most of
the methods for the Replica Catalog as stated in the Data Management Architecture document, “Section
Replica Catalog” [7]. For background on replica catalogues, logical and physical filenames please refer to
this [7].

The C++ replica catalogue class (to be found in the GDMP installation tree under
include/ReplicaCatalog/ReplicaCatalog.h is defined as follows and allows for insertion, deletion and
search of replica information:

class ReplicaCatalog {

public:

ReplicaCatalog(RC_Url contact_string,

string manager_dn,

string manager_pw,

string collection_url);

~ReplicaCatalog(void);

vector<string> getPhysicalFileNames(string lfn);

string getLogicalFileName(string pfn);

RC_Result addLogicalFileName(string lfn);

RC_Result addPhysicalFileName(string lfn, string pfn);

RC_Result deleteLogicalFileName(string lfn);

RC_Result deletePhysicalFileName(string lfn, string pfn);

RC_Result addLogicalFileAttribute(string lfn, string attrnam, string attrval);

RC_Result deleteLogicalFileAttribute(string lfn, string attrnam, string attrval)

deque<GDMP_AttrVal_Pair> getLogicalFileAttributes(string lfn);

private:

RC_Url rc_url_;

string collection_url_;

GDMP_Rep_Catalogue* rep_catalog_;

};

Note that the variables in the constructor need LDAP specific information and need to be checked with
the replica catalogue administrator.

10.2 Usage Instructions

The replica catalogue API does not depend on GDMP and can be compiled and linked without the GDMP
source code. In order to use the API in an application, the ReplicaCatalogue library as well as a few
Globus and LDAP libraries need to be linked to the application (see example makefile below). Note that
the ReplicaCatalog library is available as a static and shared library. If the shared library is used, then
the directory lib of the GDMP installation tree needs to be added to the LD LIBRARY PATH.

A test program for the replica catalogue can be found in the directory test in the GDMP source
code tree which is also available at the CVS repository at the address below. Please make sure that gdmp
install is called before rc addtest is executed. If not, you need to include “lib/.libs” to the library path.

55

http://cdcvs.fnal.gov/cgi-bin/public-cvs/cvsweb-public.cgi/gdmp/

A possible makefile looks like follows:

g++ rc_addtest.C -g -o rc_addtest -I$GLOBUS_LOCATION/include \

-I../ReplicaCatalogue -I$GLOBUS_LOCATION/include/gcc32dbgpthr \

-L../lib/.libs -L$GLOBUS_LOCATION/lib \

-lReplicaCatalog -lglobus_replica_catalog_gcc32dbgpthr \

-lglobus_common_gcc32dbgpthr -lldap_gcc32dbgpthr -llber_gcc32dbgpthr

10.3 Usage of the Replica Catalogue Command Line Tools

For the replica catalogue API we also have the equivalent command line tools in the bin directory of the
GDMP installation tree:

edg-rc

edg_rc_addLogicalFileAttribute

edg_rc_addLogicalFileName

edg_rc_addPhysicalFileName

edg_rc_deleteLogicalFileAttribute

edg_rc_deleteLogicalFileName

edg_rc_deletePhysicalFileName

edg_rc_getLogicalFileAttributes

edg_rc_getLogicalFileName

edg_rc_getPhysicalFileNames

edg-rc is the main executable but cannot be used. All other programs have symbolic links to the main
executable and must be used instead with the correct command-line arguments.

Since the client applications need information about the replica catalogue, a Replica Catalogue config-
uration file rc.conf with the following entries needs to be available:

RC_REP_CAT_MANAGER_DN = cn=RCManager, dc=host2, dc=cern, dc=ch

RC_REP_CAT_MANAGER_PWD = secret

RC_REP_CAT_URL=ldap://host2.cern.ch:2010/rc=TESTRC, dc=host2, dc=cern, dc=ch

RC_LOGICAL_COLLECTION = ldap://host2.cern.ch:2010/lc=file collection, \

rc=TESTRC, dc=host2, dc=cern, dc=ch

The client commands line tools have exactly the same attributes as the methods specified in the C++
interface. For instance:

edg_rc_addLogicalFileAttribute -l <logical file name> -n <attribute name>

-v <attribute value> [-c <config file name>] [-d] [-C]

where -l corresponds to the logical filename, -n is the attribute name, -v the attribute value.
One can optionally specify the rc.conf file for each of the client commands with the option -c. Alter-

natively, one can set the environment variable RC CONFIG FILE which needs to point to the location of the
configuration file.

The option -d is used to suppress some output.
By default, if the patched Globus Replica Catalogue libraries are used, the command-line tools try to

use GSI authentication for access to the Replica Catalogue server. In this case, the pass word entry in

56

rc.conf can be empty. With the option -C one can pass the pass word in clear text to the Replica Catalogue
server and thus it needs to be read from the configuration file rc.conf.

In summary, the command line arguments are like follows:
-l: logical filename
-p: physical filename
-n: attribute name
-v: attribute value
-c: config filename
-d: don’t show all output
-C: clear text pass word

Example

Add a logical file called filename1 and the corresponding physical file to the replica catalogue:

[hst@tbed0079] edg_rc_addLogicalFileName -l filename1 \

-p tbed0079.cern.ch/home/edg-replica-manager/testfiles/filename1 -C

configuration file: /home/edg-replica-manager/Heinz/rc.conf.new

logical file name: filename1

physical file name: tbed0079.cern.ch/home/edg-replica-manager/testfiles/filename1

Message: Opening logical collection... [Fri Mar 29 21:22:20 2002]

Message: Adding collection attributes [Fri Mar 29 21:22:20 2002]

Message: Adding logical file attributes [Fri Mar 29 21:22:20 2002]

Message: Adding location attributes [Fri Mar 29 21:22:21 2002]

Message: Closing collection [Fri Mar 29 21:22:21 2002]

OK

57

11 BrokerInfo API

11.1 Description of the Programming Interface

The BrokerInfo C++ API provides the user with an interface to job information that comes from the Job
Scheduler. The Scheduler selects a Computing Element to send a job for execution and writes info about
the selected resources in the BrokerInfo file which is shipped together with the job. Reading the BrokerInfo
file through this interface,the application may retrieve info on the Computing Element where the job is
running, the close Storage Elements, etc. The API provides also an implementation for methods that will
be provided by the WP2 Replica Manager interface in the future.

A more detailed description of the BrokerInfo library and its functionality can be found in the BrokerInfo
document provided by WP1 [8].

The C++ BrokerInfo and ReplicaCatalogB classes (to be found in the GDMP installation tree under
include/BrokerInfo/BrokerInfoB.h and include/BrokerInfo/ReplicaCatalogB.h) are defined as fol-
lows:

class BrokerInfoEx {

};

class BrokerInfo {

public:

~BrokerInfo(void);

static BrokerInfo* instance(void);

BI_Result getCE(string& CE) const;

BI_Result getDataAccessProtocol(vector<string>& DAPs) const;

BI_Result getInputPFNs(vector<string>& PFNs) const;

BI_Result getLFN2PFN(string LFN, vector<string>& PFNs) const;

BI_Result getSEs(vector<string>& SEs) const;

BI_Result getSEProto(string SE, vector<string>& SEProtos) const;

BI_Result getSEPort(string SE, string SEProtocol, string& SEPort) const;

BI_Result getCloseSEs(vector<string>& SEs) const;

BI_Result getSEMountPoint(string CloseSE, string& SEMount) const;

BI_Result getPFNs(vector<string>& PFNs) const;

private:

BrokerInfo(void);

BI_Result vSearch(const char* searchstr, vector<string>& retvect) const;

BI_Result sSearch(const char* searcharg, const string searchstr,

int& position) const;

BI_Result svIndexBuild(const char* sarg, const string sstr,

const string varg, vector<string>& retvect) const;

void vBuild(const string buildstr, vector<string>& retvect) const;

string BrokerInfoFile_;

ifstream fbrokerinfo_;

strstream mbrokerinfo_;

ClassAd* ad_;

58

static BrokerInfo* instance_;

}

class ReplicaCatalogBEx {

};

class ReplicaCatalogB {

public:

~ReplicaCatalogB(void);

ReplicaCatalogB(void);

vector<string> ReplicaCatalogB::getPhysicalFileName(string LFN);

string ReplicaCatalogB::getBestPhysicalFileName(vector<string> PFN,

vector<string> Protocols);

string ReplicaCatalogB::getTransportFileName(string PFN, string Protocol);

string ReplicaCatalogB::getPosixFileName(string TFN);

BI_Result ReplicaCatalogB::getSelectedFile(string LFN, string Protocol,

string TFN, string FileName);

private:

BrokerInfo *brokerinfo_;

};

};

11.2 Usage Instructions

The BrokerInfo API does not depend on GDMP and can be compiled and linked without the GDMP
source code. In order to use the API in an application, BrokerInfo library as well as the Condor ClassAd
library need to be linked to the application (see example makefile below). Note that the BrokerInfo library
is available as a shared and static library. If you use the shared library, the directory lib of the GDMP
installation tree needs to be added to the LD LIBRARY PATH.

A test program for the BrokerInfo can be found in the directory test in the GDMP source code tree
which is also available at the CVS repository at:

http://cdcvs.fnal.gov/cgi-bin/public-cvs/cvsweb-public.cgi/gdmp/

A possible makefile looks like follows:

g++ BrokerTester.C -g -o BrokerTester \

-I../BrokerInfo \

-I/usr/local/grid/ClassAd/include \

-L../lib/.libs \

-L/usr/local/grid/ClassAd/lib \

-lBrokerInfo -lclassads

59

12 Appendix A: Configuring GDMP with inetd

This appendix gives a short introduction to inetd and explains which system files are edited locally doing
the GDMP installation process.

12.1 Inetd Background

Simply put, the inetd provides Internet service management for a networked computer. It listens on certain
ports and calls other servers or daemons to service request. As regards GDMP, we register a certain port,
e.g. port 2000, with the inetd daemon and when a GDMP client connects to the machine via a socket
connection, the inetd daemon takes the request on port 2000, starts the GDMP server via the script
GDMP INSTALL DIR/sbin/gdmp server start and passes all the socket information to the GDMP server.
The GDMP server in turn then handles the client request.

In more detail, the inetd daemon starts by default each time the system is started. When the
daemon starts, it reads its configuration information from the configuration files /etc/services and
/etc/inetd.conf. GDMP is thus regarded as a service that is started by inetd.

12.2 Configuration Steps done by GDMP Installation Program

All the following steps are done automatically but we state them in some details for possible prob-
lem detection. In detail, the installation program inserts information into the files /etc/services and
/etc/inetd.conf to set up a service.
The following steps are done by root:

1. Edit inetd.conf to add in one line:
gdmp-server stream tcp nowait “username”
“GDMP INSTALL DIR”/sbin/gdmp server start
The terms in “ “ have to be replaced by the respective fields and “username” needs to be the userID
of the user running the GDMP server.

2. Edit the /etc/services file to add
gdmp-server “port”/tcp
again “port” is the port of your choice; we use 2000 mostly.

3. Send the HUP signal to the inetd server: Linux users can get the inetd process id (pid) from
/var/run/inetd.pid. On Solaris one can get the pid by doing ps -e | grep inetd.

To send the HUP signal to inetd you need to do:

kill -HUP <inetd_pid>

In principle, gdmp server start contains the environment variables PATH, LD LIBRARY PATH plus ad-
ditional variables for GDMP, Objectivity and Orbacus.

Since inetd does not see the PATH and LD LIBRARY PATH, you can set them here but it depends on the
system. Just do an echo PATH and echo LD LIBRARY PATH and add whatever you get in this file. Make sure
you do not have any ”echo”s in this file for debugging or whatever as the stdout is connected to the socket
when the server is started with inetd.

60

12.3 Example Configuration for inetd

An example for a /etc/inetd.conf file entry is given here. GDMP is assigned the service name gdmp-
server and the gdmp server start script will be called when inetd receives a request on the port 2000.
We assume now that is the is default GDMP port. The port itself is configured in the file /etc/services
(see below). As for all examples in this User Guide we assume that the GDMP installation directory is
/usr/local/grid/gdmp. Note that the entire sequence has to be added in one single line and the server is
started as user “username”:

gdmp-server stream tcp nowait username \

/usr/local/grid/gdmp/sbin/gdmp_server_start

In the file /etc/services the GDMP server port is assigned:

gdmp-server 2000/tcp # GDMP 3.0

61

13 Appendix B: Usage of Grid Security Infrastructure

This is a short introduction into the usage of Grid security in Globus and should be sufficient for using
GDMP. It is intended for people new to Globus. For exact details, please refer to the Security section at
the Globus web page: http://www.globus.org/Security/

GDMP assumes that Globus is installed at the local machine and requires the authentication and
authorisation method of Globus. In particular, the Globus command grid-proxy-init. Please check if
this command is available on your system.

In order to use Globus, one needs to have a special certificate and a key which are required for the
authentication procedure. For certificate requests and further details on certificates refer to the Testbed and
Integration web page of DataGrid at: http://marianne.in2p3.fr/ and check out the side bar “Certification
Authorities”.

We now assume that you have requested such a certificate and the key. The files usercert.pem and
userkey.pem by default are stored in:

user_home_directory/.globus

Please make sure that the two files have the correct access permissions:

-r-------- 1 username group 963 Mar 8 2001 userkey.pem

-r--r--r-- 1 username group 3873 Mar 8 2001 usercert.pem

Once all the files are correctly in place, a “proxy” can be gained via grid-proxy-init which provides
a single log on to several machines where you are registered as a Grid user. Only when the proxy is valid
(it expires after some time) GDMP tools can be used. The lifetime of the proxy can be checked with the
Globus command grid-proxy-info like follows:

host1>grid-proxy-info -all

subject : /O=Grid/O=CERN/OU=cern.ch/CN=Firstname Surename/CN=proxy

issuer : /O=Grid/O=CERN/OU=cern.ch/CN=Firstname Surename

type : full

strength : 512 bits

timeleft : 25:59:59 (1.0 days)

The subject name “/O=Grid/O=CERN/OU=cern.ch/CN=Firstname Surename” uniquely identifies a
Grid user. Before you want to access a remote machine, e.g. set up a GDMP transfer between host1.infn.it
and host1.cern.ch, you need to request the remote administrator to enter your subject name to the machines
“grid-mapfile” that holds all authenticated users. Note that this only needs to be done once before the
GDMP installation process.

62

14 Appendix C: Trouble Shooting for GDMP Server Configuration

In principle, the GDMP server is completely configured and set up after configure gdmp is executed and
the configuration file gdmp.conf is filled in correctly. However, no installation is perfect and below is a list
of possible errors.

In order to test if the server is installed correctly, run gdmp ping -r hostname -p portnumber. Note,
in order to do that, you need to be in the GDMP grid-mapfile of the GDMP host. We now assume that
the GDMP server is installed on host testbed008.cern.ch and is running on port 2000.

[userid@testbed008] gdmp_ping -r testbed008.cern.ch -p2002

Try to get a connection testbed008.cern.ch:2002

The GDMP server testbed008.cern.ch:2002 is listening [Wed Jan 30 16:30:14 2002]

• Wrong compiler is installed

GDMP requires the compiler gcc-2.95.2 and thus the shared library libstdc++-libc6.1-2.so.3:

[userid@testbed008] gdmp_ping -r testbed008 -p2000

gdmp_ping: error in loading shared libraries: libstdc++-libc6.1-2.so.3: \

cannot open shared object file: No such file or directory

Make sure you have the correct compiler libraries in the LD LIBRARY PATH. For instance, the
compiler can be installed in /usr/local/lib and then add this path to your path. e.g. in tcsh:

setenv LD_LIBRARY_PATH /usr/local/lib:${LD_LIBRARY_PATH}

If you try gdmp ping again, you might see the following error:

[userid@testbed008] gdmp_ping -r testbed001 -p2000

Try to get a connection testbed008:2000

Communication Error: the buffer size is not valid! [Wed Jan 30 16:41:38 2002]

Security Error: receiving server message [Wed Jan 30 16:41:38 2002]

GDMP_Req_Manager::check_authorization(): Error: establishing context [Wed Jan 30 16:41:38 2002]

Note: If this is the case also the script gdmp server start needs to be changed and the compiler
path needs to be added. Thus, add the following line into gdmp server start:

setenv LD_LIBRARY_PATH /usr/local/lib

and it should look like follows

#!/bin/csh

#

setenv LD_LIBRARY_PATH /usr/local/lib

#

Indentify GDMP_INSTALL_PATH.

#

63

• GDMP server does not respond:

[userid@testbed008] gdmp_ping -r testbed008 -p2000

Try to get a connection testbed001:20003

.....

The server testbed008 did not respond on the port 2000 ... [Wed Jan 30 16:48:42 2002]

First, check if the server is listening on the port with:

[userid@testbed008] netstat -an | grep 2000

tcp 0 0 0.0.0.0:2000 0.0.0.0:* LISTEN

This means that the server is running. Check now sbin/gdmp server start and run it:

[userid@testbed008] gdmp_server_start

/bin/gdmp_server: Command not found.

It looks like the GDMP INSTALL PATH is not correct in the file gdmp server start. Modify it
manually. Let’s assume GDMP is installed in /opt/edg. Add the absolute path for the GDMP
installation like follows:

#!/bin/csh

#

setenv LD_LIBRARY_PATH /usr/local/lib

#

Indentify GDMP_INSTALL_PATH.

#

set gdmp_serpath=‘echo $0 | awk -F/ ’{print substr($0,1,index($0,$NF)-2)}’‘

set gdmp_path=/opt/edg

64

15 Appendix D: Special Instructions for Usage in the EDG Testbed

In the EDG testbed, people do not have access to the SE directly but hav to submit GDMP jobs via the
User Interface (WP1 software). This also means that for each client command the options -S (server) -P
(port) have to be used as described in Section 6.2. For completeness, we state the entire procedure again
and explain it by using gdmp ping:

1. log on to the User Interface machine

2. get a proxy via grid-proxy-init

3. write a jdl file that contains your GDMP command (see further comments below)

4. submit your jdl file to the RB via dg-job-submit

A JDL script (gdmp ping.jdl) for calling the JDL file looks like follows:

Executable = "gdmp_ping.csh";

StdOutput = "gdmp_ping.out";

StdError = "gdmp_ping.err";

InputSandbox = {"/temp/gdmp_ping.csh"};

OutputSandbox = {"gdmp_ping.out","gdmp_ping.err"};

Requirements = other.LRMSType == "PBS" && other.OpSys=="RH 6.2";

Rank = other.MaxCpuTime;

The shell script (gdmp ping.csh) file looks as follows. Note that our server we are connecting to is
lxshare0222 but we want to ping lxshare0219. Note the usage of the parameters -P and -S:

#!/bin/csh

#

gdmp_ping -S lxshare0222.cern.ch -P 2000 -r lxshare0219.cern.ch -p 2000

#

15.1 Additional Hints

15.1.1 gdmp register local file

Since in EDG we always have to register a file that is local to the SE on not to the CE where the GDMP
client command is executed, we need to use the option -R. For instance, on lxshare0222 we want to register
files in the directory /flatfiles/SE1/cms and need to do that as follows:

gdmp_register_local_file -S lxshare0222.cern.ch -P 2000 -R -d /flatfiles/SE1/cms

Note again the options -P and -S.
To sum up, users always have to refer to the diretory structure on the SE !!! GDMP assumes that the

file is already there and it is up to the user to copy it to that location with e.g. globus-url-copy.

65

15.2 gdmp replicate get and others

The correct usage is as follows:

gdmp_replicate_get -S lxshare0222.cern.ch -P 2000

additional options can be provided but -S and -P are essential. This is also true for:

• gdmp publish catalogue

• gdmp get catalogue

• gdmp ping

• gdmp remove local file

• gdmp replicate put

15.3 Miscellaneous

Additional EDG testbed specific hints and instructions can be found at:

http://cmsdoc.cern.ch/cms/grid/edg-testbed/

where we can also put up new questions and answers.

66

Acknowledgements

The GDMP project (originally called Grid Data Management Pilot) was started in early 2000 as a pilot
project by Heinz Stockinger and Asad Samar to evaluate the Globus toolkit, take useful features for a file
replication system and produce a prototype to be evaluated in a real production environment.

The software development process is already well advanced and the project is now a collaboration
between the European DataGrid (in particular the Data Management work package) and the Particle
Physics Data Grid (PPDG). Thus, the GDMP team was increased and we got lots of constructive feedback
from our colleagues in DataGrid and PPDG. In particular, we want to thank the WP2 team (the bigger
subset that is not already in the GDMP team): Wolfgang Hoschek, Peter Kunszt, Javier Jaen-Martinez,
Ben Segal, Kurt Stockinger and Brian Tierney.

From the US side, we want to thank the Globus team: in particular Bill Allcock, John Bresnahan, Ann
Chevernak, Ian Foster, Carl Kesselman, Darcy Quesnel and Mike Wilde (we definitely have forgotten a
few names (sorry about that) but these are the people we have most contacts with). Thanks also to Miron
Livny (Univ. of Wisconsin) for good discussions which led to several useful additions to GDMP.

Within the DataGrid testbed we got constructive feedback from several people like Stephen Burke and
Jeffrey Templon.

Versions 1.0 until 1.2.2

We keep the acknowledgement of older GDMP versions too since the following people gave constructive
feedback and discussion during the first project phase:

We want to thank Tony Wildish (Princeton University) for initial work on a replication tool written in
Perl. This tool [12] and personal discussions have provided us with important input for the architecture
of GDMP. Furthermore, thanks to Koen Holtman (Caltech) who is re-using and testing parts of our code
and has pointed out some bugs in the software. Thank you also to Shahzad Muzaffar (Fermi National
Lab.) for taking part in the transatlantic replication tests and fixing bugs in GDMP. Thanks to Flavia
Donno (INFN) for very valuable input and providing an installation procedure for GDMP within the
INFN Installation. Finally we want to thank Luciano Barone (INFN), Dominique Boutigny (IN2P3), Jo-
hannes Gutleber (CERN), Mehnaz Hafeez (CERN), Koen Holtman (Caltech), Wolfgang Hoschek (CERN),
Bob Jacobson (LBL), Werner Jank (CERN), Javier Jaen-Martinez (CERN), Veronique Lefebure (CERN),
Harvey Newman (Caltech), Ben Segal (CERN), Arie Shoshani (LBL), and Kurt Stockinger (CERN) for
their input and valuable discussions. We are also thankful to the Globus team for providing support and
technical advice on various issues.

References

[1] L. M. Bernardo, A. Shoshani, A. Sim, H. Nordberg. Access Coordination of Tertiary Storage for High
Energy Physics Application, 17th IEEE Symposium on Mass Storage Systems and 8th NASA Goddard
Conference on Mass Storage Systems and Technologies, Maryland, USA, March 27-30, 2000.

[2] European DataGrid Project: http://www.eu-datagrid.org

[3] Data Management Work Package in EDG: http://grid-data-management.web.cern.ch/grid-data-
management

[4] Andrea Domenici, Notes on the Usage of an experimental Replica Catalog for the CERN DataGrid
Testbed, 14 August 2001. http://www.cern.ch/grid-data-management/docs/ldapuse.ps

67

[5] Globus Project: Getting Started with the Globus Replica Catalog,
http://www.globus.org/datagrid/deliverables/replicaGettingStarted.pdf

[6] Mehnaz Hafeez, Asad Samar, Heinz Stockinger. A DataGrid Prototype for Distributed Data Production
in CMS, VII International Workshop on Advanced Computing and Analysis Techniques in Physics
Research (ACAT2000), October 2000.

[7] Wolfgang Hoschek, Javier Jean-Martinez, Peter Kunszt, Ben Segal, Heinz Stockinger, Kurt
Stockinger, Brian Tierney. Data Management (WP2) Architecture Report - Design, Requirements and
Valuation Criteria, DataGrid-02-D2.2-0103-1 2, http://grid-data-management.web.cern.ch/grid-data-
management/docs/DataGrid-02-D2.2-0103-1 2.pdf, Geneva, Sept 19, 2001.

[8] Flavia Donno, Salvo Monforte, Francesco Prelz, Livio Salconi, Massimo Sgaravatto. The Resource Bro-
ker Info File, DataGrid-01-NOT-0113 http://www.pd.infn.it/∼sgaravat/Grid/datagrid-01-not-0113-
1 2.pdf Pisa, Sept 28, 2001.

[9] Particle Physics Data Grid project (PPDG): http://www.ppdg.net

[10] Asad Samar, Heinz Stockinger. Grid Data Management Pilot (GDMP): A Tool for Wide Area Replica-
tion, IASTED International Conference on Applied Informatics (AI2001), Innsbruck, Austria, February
19-22, 2001.

[11] Heinz Stockinger, Asad Samar, Bill Allcock, Ian Foster, Koen Holtman, Brian Tierney. File and Object
Replication in Data Grids, 10th IEEE International Symposium on High Performance and Distributed
Computing (HPDC-10), San Francisco, California, August 7-9, 2001.

[12] http://www.cern.ch/wildish

[13] Wengyik Yeong, Tim Howes, Steve Kille. Lightweight Directory Access Protocol, Request For Com-
ments (RFC) 1777, March 1995.

68

